免疫检查点抑制剂已彻底改变了癌症治疗,但许多患者的预后较差。在这里,我们在膀胱和非小细胞肺癌中显示了免疫疗法反应,可以通过将肿瘤突变负担(TMB)的特定蛋白质组件负担来预测。这种方法确定了13个蛋白质组件,而组装级突变负担(AMB)可以预测治疗结果,可以将其组合起来,以有力地将反应者与多个队列中的无反应者分开(例如,76%对37%的Bladder Cancer Cancer 1年生存)。这些结果通过(i)预测组件中的工程干扰来证实,这些干扰调节小鼠的免疫疗法反应,以及(ii)组织化学表明预测的响应者炎症升高。13个组件在DNA损伤检查点,氧化应激或Janus激酶/信号传感器和转录信号的激活剂中具有不同的作用,其中包括突变影响治疗反应的意外基因(例如PIK3CG和FOXP1)。这项研究提供了使用肿瘤细胞生物学来考虑突变对免疫反应的影响的路线图。
结构化的RNA位于许多中心生物学过程的核心,从基因表达到催化。RNA结构预测由于缺乏与有机体表型相关的高质量参考数据而无法为RNA功能提供的,因此无法进行预测。我们提出了石榴石(GTDB获得了带有环境温度的RNA),这是一个固定在基因组分类数据库(GTDB)的RNA结构和功能分析的新数据库。石榴石将RNA序列与GTDB参考生物的实验和预测的最佳生长温度联系起来。使用石榴石,我们开发了序列和结构感知的RNA生成模型,重叠的三重态Tokeni-Zation为GPT样模型提供了最佳的编码。在石榴石和这些RNA生成模型中利用高嗜热RNA,我们确定了核糖体RNA中的突变,这些突变赋予了赋予大肠杆菌核糖体的热稳定性。此处介绍的GTDB衍生的数据和深度学习模型为理解RNA序列,结构和功能之间的连接提供了基础。
小麦是全球粮食安全的重要贡献者,为了养活不断增长的人口,小麦需要进一步改良。功能遗传学和基因组学工具可以帮助我们了解不同基因的功能并设计有益的变化。在这项研究中,我们使用启动子捕获分析对四倍体小麦品种 Kronos 的 1,513 株诱变植物中所有高置信度注释基因上游 2 kb 区域进行测序。我们鉴定了 430 万个诱发突变,准确率为 99.8%,突变密度为每 kb 41.9 个突变。我们还将 Kronos 外显子组捕获读数重新映射到 Chinese Spring RefSeq v1.1,鉴定了 470 万个突变,并预测了它们对注释基因的影响。使用这些预测,我们鉴定出的非同义替换比原始研究多 59%,截断突变多 49%。为了展示启动子数据集的生物学价值,我们选择了 VRN - A1 春化基因启动子内的两个突变。这两个突变都位于转录因子结合位点内,显著改变了 VRN - A1 的表达,一个突变减少了每个穗的小穗数量。这些公开可用的测序突变数据集提供了快速且廉价的途径,可以获取大多数小麦基因启动子和编码区中诱导的变异。这些突变可用于了解和调节基因表达和表型,用于基础和商业应用,有限的政府监管可以促进部署。这些突变集合与基因编辑一起,为加速这种经济重要作物的功能遗传研究提供了宝贵的工具。
图3。(a)MCF7_ESR1 WT,MCF7_ESR1 Y537S和MCF7_ESR1 D538G细胞用9浓度的palbociclib±雌激素剥夺(E2-)或1 nm fulvesterant处理。治疗6天后,通过曲面测定法测量细胞活力。(b)MCF7_ESR1 WT的肿瘤生长(n = 12),MCF7_ESR1 Y537S(n = 8)或MCF7_ESR1 D538G(N = 8)异种移植物在卵巢肌切除术中。小鼠用车辆或50mg/kg Palbociclib P.O.持续4周。(c)在(b)中描述的肿瘤处理结束时肿瘤体积的折叠变化的比较。(d)(b)中肿瘤的IHC染色定量。数据代表平均值±SD;使用Dunnett的事后测试使用单向方差分析进行统计分析。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月25日发布。 https://doi.org/10.1101/2024.01.25.577271 doi:Biorxiv Preprint
此预印本的版权所有者此版本于 2021 年 11 月 21 日发布。;https://doi.org/10.1101/2021.11.18.469120 doi: bioRxiv preprint
DNA 甲基化是调节生物体基因表达的重要因素。然而,DNA 甲基化是否在适应性进化中发挥关键作用尚不清楚。本文,我们展示了拟南芥中自然选择的 DNA 甲基化的证据。与单核苷酸多态性相比,三种类型的甲基化——甲基化 CG (mCG)、mCHG 和 mCHH——对拟南芥种群中基因表达水平的变化贡献很大。这些表达不稳定的基因在很大程度上影响了特化代谢量的巨大变化。在这三种类型的甲基化中,只有位于与特化代谢物相关的基因启动子区域的 mCG 在拟南芥种群中显示出选择性清除特征。因此,自然选择的 mCG 似乎是导致植物进化过程中与特化代谢物相关的表达多样性的关键突变。
碱基编辑器是一类新的可编程基因组编辑工具,它将 ssDNA(单链 DNA)修饰酶与催化失活的 CRISPR 相关(Cas)核酸内切酶融合,以诱导高效的单碱基变化。目前已报道了数十种碱基编辑器,显然这些工具是高度模块化的;ssDNA 修饰酶和 Cas 蛋白的多种组合产生了各种碱基编辑器,每种编辑器都有其独特的属性和潜在用途。从这个角度来看,我们描述了当前可用的碱基编辑器,强调了它们的模块化特性并描述了每个组件可用的各种选项。此外,我们简要讨论了合成生物学和基因组工程中的应用,在这些应用中,碱基编辑器比其他技术具有独特的优势。
其结构主要由胞外区、跨膜区和胞内酪氨酸激酶结构域三部分组成。EGFR基因全长192kbp,由28个外显子组成,位于7号染色体短臂7p21-14区域。大多数突变发生在18~21外显子,不同类型的突变对EGFR TKI临床疗效的影响不同。外显子19的缺失和外显子21的L858R替换是EGFR最常见的两种突变,且对TKI敏感。EGFR Ex20Ins突变是第三种最典型的EGFR突变类型,已知其与吉非替尼、厄洛替尼等常见TKI耐药有关。目前,EGFR外显子20插入突变类型共122种,位于C螺旋后的Met766-Cys775,少数位于C螺旋后的G1u762-Tyr764。其中20.5%的插入发生在Val769位氨基酸之后,28.7%的插入发生在Asp770位氨基酸之后,17.2%的插入发生在Pro772位氨基酸之后,14%的插入发生在His773位氨基酸之后(5)。最常见的突变类型为Asp770_Asn771ins,其次为Va1769_Asp770ins、Asp770_Asn771ins、A1a767_Va1769、Va1769_Asp770ins和Ser768_Asp770,其插入序列基本相似。 EGFR Ex20Ins 是一个高度异质性的激活突变家族,其分子结构、生物学特性和对 EGFR TKI 的反应存在复杂的差异。对 EGFR 外显子 20 突变进行了分析
提交内容:CRISPR/Cas 9 介导的糖受体 AmGr3 突变作为研究蜜蜂 (Apis mellifera) 生理和行为的新工具 10