摘要近年来,将二维MXENE与钙钛矿太阳能电池掺入引起了很多关注。mxenes由于其表面终止功能组T X而显示出独特的电气功能。此外,将这种材料纳入钙钛矿太阳能电池已导致效率提高并提高了光电性能。在目前的工作中,使用comsol多物理学来模拟由电子传输层(ETL)组成的掺杂的钙钛矿太阳能电池,由钙钛矿(MAPBI 3)和MXENE(TI 3 C 2 T X)和带有配置ETL/ MAPBI 3 + MX的吸收层(MAPBI 3)和孔传输层(HTL)和孔传输层(HTL)。用于材料,将TIO 2(120 nm)用作ETL,并将螺旋形(140 nm)用作HTL。对吸收层(MAPBI 3 + MXENE)的厚度和浓度的影响进行了彻底研究以提高其效率。然后使用理想的厚度和掺杂浓度的理想变化来告知最佳太阳能电池结构的设计,该结构的最大效率为19.87%,填充系数为0.57,开路电压(V OC)为1.10V,短路电流电流密度(J SC)为31.97 mA/cm/cm 2。据我们所知,这是Comsol多物理学首次用于模拟用2D Ti 3 C 2 T X MXENE掺杂的钙钛矿太阳能电池。因此,结果给出了有意义的指导和洞察力,并深入研究了掺杂的钙岩太阳能电池的制造和进一步研究。关键字:Perovskite,mxene,comsol,仿真。
最近发现二维(2D)过渡金属碳化物和硝酸盐(MXENES)由于其独特的电气,光学和化学性质而受到了极大的关注。这些非凡的特性使它们成为各种应用,包括通过光热效应的多模式肿瘤疗法的合适候选者。在这项工作中,我们演示了如何通过应用连续的超声处理过程来减少1-5 µm大的Ti 3 C 2单层MXENE片。不同的微观技术已被用来可视化超大单层Ti 3 C 2纳米片的形成。所制备的Mxene纳米片在水和乙醇中表现出良好的溶解度。此外,使用(3-氨基丙基)三乙氧基硅烷(Aptes)和聚(3,4-乙二烯二苯乙烯)聚苯乙烯磺酸盐(PEDOT:PSS)用于MXENE纳米片的表面修饰,以打开随后的抗体生物套件的可能性。PEDOT:PSS改善了纳米片的光热转化性能,这是通过在辐射时从48.6ºC增加到58.1ºC的记录,提高了808 nm波长激光器的温度。进一步的体内和体外研究将需要优化Ti 3 C 2纳米片的光热特性。