花生 ( Arachis hypogaea L.) 是豆科植物的异源四倍体,能够在热带和亚热带地区生长茂盛,被认为是一种很有前途的全球油籽作物。提高油酸含量已成为花生育种的主要目标之一,因为它具有降低血液胆固醇水平等健康益处、抗氧化特性以及延长保质期等工业效益。花生基因组测序已证明存在编码脂肪酸去饱和酶 2 ( FAD2 ) 的同源基因 AhFAD2A 和 AhFAD2B,它们负责催化单不饱和油酸转化为多不饱和亚油酸。研究表明,导致 FAD2 基因移码或终止密码子的突变会导致油中油酸含量升高。在本研究中,使用与不同脱氨酶融合的 Cas9 构建了两个表达载体 pDW3873 和 pDW3876,并测试了它们作为诱导花生 AhFAD2 基因启动子和编码序列点突变的工具。两种构建体都含有单核酸酶无效变体 nCas9 D10A,PmCDA1 胞嘧啶脱氨酶与该变体融合到 C 端(pDW3873),而 rAPOBEC1 脱氨酶和尿嘧啶糖基化酶抑制剂 (UGI) 分别融合到 N 端和 C 端(pDW3876)。将三个 gRNA 独立克隆到两个构建体中,并在 AhFAD2 基因的三个靶位点测试其功能和效率。两种构建体都显示出碱基编辑活性,其中在靶向编辑窗口中胞嘧啶被胸腺嘧啶或其他碱基取代。 pDW3873 的效率高于 pDW3876,表明前者是花生中更好的碱基编辑器。这是一个重要的进步,因为将现有突变基因渗入优良品种可能需要长达 15 年的时间,这使得该工具对花生育种者、农民、行业以及最终对消费者都大有裨益。
精确定位碱基编辑平台的开发目的是通过使用 RNA 适体 (Collantes, 2021) 来有效招募碱基修饰酶。精确定位碱基编辑系统可有效诱导靶标特异性核苷酸变化,而不会形成 DNA 双链断裂或插入缺失。该系统由三个部分组成:[1] 核酸酶缺陷型“切口酶” nCas9,仅切割或“切口”单链 DNA,与尿嘧啶糖基化酶 (UGI) 抑制剂融合 (Komor, 2016),[2] 胞苷脱氨酶碱基编辑器 (大鼠 APOBEC) 与适体结合蛋白融合,以及 [3] 适体单向导 RNA (sgRNA),可将 nCas9 和适体-脱氨酶融合物招募到特定的 DNA 靶位点(图 1)。将这三种成分递送到哺乳动物细胞中可诱导高度特定水平的 CG 到 TA 碱基转化,适用于涉及单个氨基酸点突变或功能性基因敲除的细胞和基因治疗应用。
金黄色葡萄球菌中的染色体突变和靶基因缺失和失活通常使用等位基因交换方法产生。然而,近年来,已经开发出更快速的方法,通常使用基于 CRISPR - Cas9 的系统。在这里,我们描述了最近开发的用于金黄色葡萄球菌的基于 CRISPR - Cas9 的质粒系统,并讨论了它们在靶基因突变和失活中的用途。首先,我们描述如何将 CRISPR - Cas9 反选择策略与重组工程策略相结合以在金黄色葡萄球菌中产生基因缺失。然后我们引入死 Cas9 (dCas9) 和 Cas9 切口酶 (nCas9) 酶,并讨论如何使用与不同核苷脱氨酶融合的 nCas9 酶在靶基因中引入特定的碱基变化。然后,我们讨论如何通过引入提前终止密码子或突变起始密码子,使用 nCas9-脱氨酶融合酶来实现靶向基因失活。这些工具共同凸显了基于 CRISPR - Cas9 的方法在金黄色葡萄球菌基因组编辑中的强大功能和潜力。
CRISPR/CAS9系统已成为一种强大的基因组工程工具,用于研究基因功能并改善植物特征。基因组编辑是通过Cas9核酸内切酶在特定的基因组序列上实现的,以产生由短导RNA(SGRNA)指导的双标准断裂(DSB)。DSB通过容易出错的非同源末端连接(NHEJ)或无错误的同源指导修复(HDR)路径来修复,分别导致基因突变或序列替换。这些细胞DSB修复途径可以被利用以敲除或替换基因。另外,胞质或腺嘌呤碱基编辑器(CBES或ABE)融合到催化死亡的Cas9(DCAS9)或Nickase Cas9(NCAS9)(NCAS9)时,也用于执行精确的基础编辑而无需生成DSB。在本章中,我们描述了通过使用基于CRISPR/CAS9的系统在拟南芥基因组中执行单个/多基因突变和精确基础编辑的详细程序。特别是,描述了转基因线的目标基因选择,SGRNA设计,矢量结构,转化和分析的步骤。该方案有可能适应在其他植物物种(例如水稻)中进行基因组编辑。
抽象背景:CRISPR工具箱通过标记效应子域的快速扩展,以酶促无效CAS9(DCAS9)或Cas9 Nickase(NCAS9)导致了几种有希望的新基因编辑策略。最近的添加包括CRISPR胞嘧啶或腺嘌呤碱基编辑器(CBES和ABES)和CRISPR Prime编辑器(PES),其中脱氨酶或逆转录酶分别融合到NCAS9。这些工具在动物和植物模型中建模并纠正引起疾病的突变的巨大希望。但到目前为止,还没有广泛可用的工具可以自动化BE和PE试剂的设计。结果:我们开发了PNB Designer,这是一种基于Web的PEGR NAS设计的应用程序,用于BES,并指导RNA。PNB设计师使设计定位指向RNA的指南RNA针对跨越多个王国的变体或参考基因组上的单个或多个靶标的指南RNA。与PNB设计师一起,我们设计了PegrNA,以模拟所有已知疾病,从而导致Clinvar可用的突变。此外,PNB设计人员可用于设计指南RNA来安装或恢复SNV,用一个CBE和七个不同的ABE PAM变体扫描基因组,并返回最佳使用。PNB设计师可以在http://fgcz-shiny .uzh.ch.ch.ch/pnbde signe r/结论上公开访问:结论:使用PNB设计师,我们为CRISPR PE和BE Reagents创建了一种用户友好的设计工具,应该简化选择编辑策略和避免设计并避免设计并进行设计。
全球有数百万人患有由 DNA 序列各种突变引起的罕见遗传病。罕见遗传病的传统治疗方法往往无效,因此人们对基因编辑方法寄予厚望。基于 nCas9(具有切口酶活性的 Cas9)或 dCas9(催化无活性的 DNA 靶向 Cas9 酶)的 DNA 碱基编辑系统能够在不造成双链断裂的情况下进行编辑。这些工具在不断改进,增加了它们在治疗中的潜在用途。在这篇综述中,我们描述了主要类型的碱基编辑系统及其在体外和体内实验中治疗单基因疾病的应用。此外,为了了解这些系统的治疗潜力,我们还研究了碱基编辑系统的优缺点。
在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
(a) Prime Editor 活性报告基因 (PEAR) 的示意图。PEAR 的机制基于与 BEAR 相同的概念,并且包含相同的非活性剪接位点,如图 (a) 所示。PE 可以将“G-AC - AAGT”序列恢复为规范的“G-GT-AAGT”剪接位点。与 BEAR 不同的是,这里的 Prime 编辑发生在 DNA 的反义链上,因此,这种方法使我们能够将间隔序列定位在内含子内。这里,整个间隔的长度是可以自由调整的(显示为“N”-s)。剪接位点的改变的碱基显示为红色,编辑的碱基显示为蓝色。PAM 序列为深绿色,nCas9 为蓝色,融合的逆转录酶为橙色。
