研究药物从给药部位移动到药理作用部位并从体内消除的过程称为“药代动力学”。影响药物在体内移动(动力学)和命运的因素有:(1)从剂型中释放;(2)从给药部位吸收进入血液;(3)分布到身体各个部位,包括作用部位;(4)通过代谢或排泄原形药物从体内消除的速率。这些过程通常用首字母缩略词 ADME 来表示:吸收、分布、代谢和排泄。药物的 ADME 参数用各种术语来描述,例如 Cmax(血清中药物的最大浓度);Tmax(达到最大药物浓度的时间)
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
尽管神经辐射场 (NeRF) 在图像新视图合成 (NVS) 方面取得了成功,但 LiDAR NVS 仍然基本上未被探索。以前的 LiDAR NVS 方法采用了与图像 NVS 方法的简单转变,同时忽略了 LiDAR 点云的动态特性和大规模重建问题。鉴于此,我们提出了 LiDAR4D,这是一个可微分的 LiDAR 专用框架,用于新颖的时空 LiDAR 视图合成。考虑到稀疏性和大规模特性,我们设计了一种结合多平面和网格特征的 4D 混合表示,以由粗到细的方式实现有效重建。此外,我们引入了从点云衍生的几何约束来提高时间一致性。对于 LiDAR 点云的真实合成,我们结合了光线丢弃概率的全局优化来保留跨区域模式。在 KITTI-360 和 NuScenes 数据集上进行的大量实验证明了我们的方法在实现几何感知和时间一致的动态重建方面具有优越性。代码可在 https://github.com/ispc-lab/LiDAR4D 获得。
我们提出了一种基于辩论动态的知识图谱自动推理新方法。其主要思想是将三重分类任务构建为两个强化学习代理之间的辩论游戏,它们提取论据(知识图谱中的路径),目标是分别促使事实为真(论点)或事实为假(反论点)。基于这些论据,一个称为评判者的二元分类器决定事实是真是假。这两个代理可被视为稀疏的对抗性特征生成器,为论点或反论点提供可解释的证据。与其他黑箱方法相比,这些论据让用户能够了解评判者的决定。由于这项工作的重点是创建一种可解释的方法以保持具有竞争力的预测准确率,因此我们在三重分类和链接预测任务上对我们的方法进行了基准测试。因此,我们发现我们的方法在基准数据集 FB15k-237、WN18RR 和 Hetionet 上的表现优于几个基线。我们还进行了一项调查,发现提取的参数对用户很有帮助。
摘要 由于抗生素耐药性的增加,霍乱弧菌在低收入国家造成了危及生命的感染。人们研究了创新的药理学靶点,霍乱弧菌编码的碳酸酐酶 (CAs,EC:4.2.1.1) (Vch CAs) 成为一个有价值的选择。最近,我们开发了一个大型对苯和间苯磺酰胺库,其特征是具有不同柔韧性程度的部分作为 CAs 抑制剂。基于停止流的酶促测定表明该库对 Vch a CA 有强烈的抑制作用,而对其他同工型的亲和力较低。特别是环脲 9c 对 Vch a CA 的抑制作用达到纳摩尔水平(KI ¼ 4.7 nM),并且对人类同工酶具有高选择性(SI 90)。计算研究揭示了部分柔韧性对抑制活性和同工型选择性的影响,并允许进行准确的 SAR。然而,尽管 Vch CA 与细菌的毒力有关而非其存活率,我们评估了此类化合物的抗菌活性,结果没有直接活性。
免疫治疗被广泛认为是一种很有前途的癌症治疗方法,但肿瘤微环境(TME)的免疫效应相抑制和免疫相关不良事件的产生限制了它的应用。研究表明,声动力疗法(SDT)能在杀死肿瘤细胞的同时有效激活抗肿瘤免疫。SDT产生肿瘤的细胞毒物质,然后在超声作用下选择性激活声敏剂,导致细胞凋亡和免疫原性死亡。近年来,各种SDT单独使用以及SDT与其他疗法联合使用被开发来诱导免疫原性细胞死亡(ICD)和增强免疫治疗。本文综述了近年来SDT与纳米技术的研究进展,包括单独使用SDT的策略、基于SDT的协同诱导抗肿瘤免疫的策略以及基于SDT的多模态免疫治疗的免疫疗法。最后讨论了这些基于SDT的疗法在癌症免疫治疗中的前景与挑战。
摘要 企业传播规划正处于转型期。在 VUCA 世界中,规划必须适应不稳定、不确定、复杂和模糊的环境。战略规划分析、计划、实施和评估传播计划或活动,但同时需要变得越来越敏捷。本文提出了战略规划正在从传统的、相当线性的方法向新的、更具动态性的模型演变的论点。基于文献,通过将设计思维原则、实践和技术引入传播研究的知识体系,提供了一种新的视角。因此,本文将设计思维作为一种思维方式和一种在企业传播规划中创造性解决问题的手段。一项在德国传播机构和咨询公司中进行的定性研究的结果表明,设计思维的元素已被实践者使用和实施。研究确定至少有五种类型的实现,其中三种与设计思维有明显的联系。基于这些发现,一种模块化、以利益相关者为中心的传播规划方法被概念化。
基于变压器的大语言模型(LLMS)在各种自然语言处理任务中都具有令人印象深刻的表现。为LLM推断为生成长含量而构成挑战,这是由于瞬态状态的巨大内存足迹(称为键值(KV)缓存),该状态以序列长度和批处理大小缩放。在本文中,我们提出了Infinigen,这是一种针对Longext Genertion量身定制的新型KV缓存管理框架,该框架协同与现代卸载基于卸载的推理系统合作。Infinigen利用了关键见解,即可以通过对当前层的最小彩排以及查询权重的一部分和后续层的关键缓存进行最小化的彩排来推测,对于计算变压器中后续注意力层至关重要的重要洞察力。这使我们只能预取基本的KV缓存条目(不提供所有内容),从而在基于卸载的LLM服务系统中减轻主机内存中的提取开销。我们对几种代表性LLMS的评估表明,与先前的KV高速缓存管理方法相比,Infinigen将基于现代卸载系统的总体性能提高了3.00倍,同时提供了更好的模型准确性。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过过滤动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描中学习此表示,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
摘要。事件摄像机作为具有较高dynamic范围的生物启发的视觉传感器,能够解决局部过度繁殖或不受欢迎的问题,即在具有高动态范围或波动的光照条件下,常规的基于框架的摄像机会遇到的常规基于框架的摄像机。由于两种相机之间的模态差距,简单的融合是不可行的。此外,由摄像机位置和框架速率偏差引起的幽灵伪影也会影响最终融合图像的质量。为了解决问题,本文提出了一个联合框架,将当地暴露的帧与事件摄像机捕获的事件流相结合,以在高动态范围场景中以偏斜的纹理增强图像。具体来说,使用轻量级的多尺度接收场块用于从事件流到帧的快速模态转换。此外,还提出了一个双分支融合模块来对齐特征并删除幽灵伪像。实验结果表明,所提出的方法有效地减轻了一系列极端照明条件的图像高度明亮和黑暗区域的信息丢失,从而产生了逼真的和自然的图像。