图2。perovskite@polymer纳米纤维的形态。a)和b)L-PPNF的TEM图像。c)使用PMMA获得的纳米纤维的TEM图像,为此,没有形成明显的钙钛矿纳米晶体。d)perovskite@pvdf纳米纤维的TEM图像。PVDF纳米纤维中嵌入的巨大不规则形状的钙钛矿也有粗糙的表面。e)在紫外线照明下浸入水中的不同时间后,L-PPNF的照片。f)收集在A4纸上的L-PPNF的照片以及紫外灯照明下的相应荧光图像,显示样品均匀性。g)大规模的L-PPNF的SEM图像。
药物的溶解度在其生物利用度中起关键作用,尤其是水溶性药物。生物药物分类系统(BCS)II类药物,其特征是渗透率高但溶解度较低,对有效的药物制剂和治疗功效构成了重大挑战。本评论研究了用于BCS II类药物采用的各种溶解度增强技术,强调了常规策略和高级策略。技术,例如固体分散体,与环糊精,纳米化,基于脂质的配方以及表面活性剂的使用,重点是其机制,优势和局限性。此外,还探索了诸如无定形药物制剂,纳米晶体和超临界流体技术之类的新兴方法,反映了药物配方中正在进行的创新。
为了研究纳米结构对其环境的影响以及纳米结构附近电磁场增强的影响,人们广泛用于开发各种方法,如表面增强拉曼光谱 (SERS)。然而,识别层和金属纳米粒子之间的接口仍然是一个关键步骤。开发简单、稳健、可重复但高性能且可控制功能化的制造工艺,对于当今的实际应用来说仍然是一个挑战。在潜在的识别材料中,分子印迹聚合物 (MIP) 是首选材料。[4,5,6] 与生物抗体-抗原系统相比,它们的制备成本低且合成相对简单,因此它们确实对 (生物) 传感应用很有意义。[7,8,9] MIP 的其他优点包括其机械和化学稳定性以及易于制造,这使得这种材料更耐用、可重复使用且易于集成到标准流程中,如传感器开发。 MIP 是通过围绕目标分子或衍生物聚合而构建的聚合物材料,充当分子模板。绝大多数 MIP 是通过乙烯基单体的自由基聚合合成的。首先,模板和功能单体之间通过可逆范德华力、离子键、氢键、配位键和/或共价键形成复合物。[10] 加入交联剂单体和聚合引发剂。[4,10,11,12] 然后通过热、光化学或氧化还原途径进行聚合。交联后,通常在酸性介质中冲洗 MIP,以削弱模板和聚合物之间的键,从而释放模板并显示分子印迹。[11,13] 光化学途径有几个优点。其中包括利用光化学反应的时空控制原位生产 MIP。 [14] 例如,使用纳米晶体作为单独的光源,通过局部引发聚合反应,合成了涂有 MIP 的荧光纳米晶体复合材料。[15,16]
近来,通过控制尺寸和形态缩短电极材料中的离子传输距离,在改善离子传输方面取得了巨大进展。一种通用的策略是合成纳米晶体并将其用作电极材料。[10] 或者,构建电极材料和电解质之间易于接触的分层结构也是另一种可行的方法。[11,12] 例如,离子可以轻松扩散到 3D 多孔石墨烯结构中,实现高倍率能量存储。[13] 值得注意的是,控制电极材料中的离子迁移率,特别是对于高质量负载的电极,是增强能量存储的另一个重要因素。[2,12] 尽管付出了巨大的努力,但取得的进展相对较少
许多种细菌能够制造比合成材料更精细的材料。这些产品通常在细胞内产生,这些细胞内具有真核细胞器的许多特征。一群独特而优雅的生物处于细胞器形成和生物矿化机制研究的前沿。趋磁细菌 (MTB) 产生的细胞器称为磁小体,其中包含磁性材料纳米晶体,了解磁小体形成和生物矿化背后的分子机制是一个丰富的研究领域。在本综述中,我们重点关注磁小体形成和生物矿化背后的遗传学。我们介绍了 MTB 遗传学发现的历史和近年来发现的关键见解,并对 MTB 遗传学研究的未来提供了展望。
我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用甲镜液的蒽晶体掺杂的单二苯甲酸烯(DBT)分子,这些分子是由北眼镜的高度制造而成的。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与在体积中相同的客人主持系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。有机纳米和微晶的电水动力印刷为一系列应用铺平了道路,其中希望具有狭窄光学转换的量子发射器的受控定位。
研究兴趣 自旋轨道耦合 自旋轨道耦合及其对材料特性(如磁性和传输特性)的影响也是我们感兴趣的领域,其中异质结构界面处的类Rashba效应是焦点。材料的拓扑保护特性也是我们所感兴趣的。 磁性 我们的兴趣是了解各种材料的磁性,并找出导致磁基态的机制。 纳米材料 半导体材料的纳米晶体表现出许多有趣的特性,主要是因为两个原因:(a)由于量子限制,带隙变宽,(b)晶格周期性不再存在。我们研究的重点是纳米级半导体材料的磁性和光学特性,这些特性可能对技术应用有用。
共价有机骨架 (COF) 是具有固有孔隙率的晶体材料,可在各个领域提供广泛的潜在应用。然而,COF 研究领域的主要目标是实现最稳定的热力学产物,同时达到实现特定功能所必需的尺寸和结构。虽然在 2D COF 的合成和加工方面取得了重大进展,但可加工的 3D COF 纳米晶体的开发仍然具有挑战性。本文介绍了一种在环境条件下生产可加工的亚 40 纳米 3D COF 纳米粒子的水基纳米反应器技术。值得注意的是,这项技术不仅提高了合成的 3D COF 的可加工性,而且还揭示了它们在以前未探索过的领域(如纳米/微型机器人和生物医学)中的应用令人兴奋的可能性,这些领域受到较大晶体的限制。
共价有机骨架 (COF) 是具有固有孔隙率的晶体材料,可在各个领域提供广泛的潜在应用。然而,COF 研究领域的主要目标是实现最稳定的热力学产物,同时达到实现特定功能所必需的尺寸和结构。虽然在 2D COF 的合成和加工方面取得了重大进展,但可加工的 3D COF 纳米晶体的开发仍然具有挑战性。本文介绍了一种在环境条件下生产可加工的亚 40 纳米 3D COF 纳米粒子的水基纳米反应器技术。值得注意的是,这项技术不仅提高了合成 3D COF 的可加工性,而且还揭示了它们在以前未探索过的领域(如纳米/微型机器人和生物医学)中的应用令人兴奋的可能性,这些领域受到较大晶体的限制。
有价证件的伪造和掺假会造成经济损失并引发社会关注。防伪工作需要先进的材料和技术来防止伪造。荧光油墨通常用作二级安全特征;在日光下不可见,在紫外线下可检测。在过去十年中,为了防止伪造,人们使用不同的印刷技术制作了安全标签,其中使用各种荧光油墨,这些油墨由稀土发光材料 1-6 钙钛矿纳米晶体、7,8 碳点、9-11 有机染料、12,13 和量子点配制而成。14-16 在各种印刷方法中,丝网印刷是首选,因为它很容易应用于各种基材。17 丝网印刷是一种独特的技术,因为它具有
