和e de。(在图中d(e)de = g(e)de中)上图表明,当我们从0D移动到3D时,能级将变得离散。量子态的数量在确定诸如半导体之类的材料的光学特性中变得很重要(即碳纳米管或量子点)。
JGU MAINZ教授Katharina Landfester Max Planck聚合物研究所,Mainz Mainz Pol. Pol Besenius化学系,JGU Mainz Mainz教授Twan Lammers实验性分子成像,RWTH AACHEN ACHEN ACHEN ACHEN PROCH。 功能垫。 和生物制造,Würzburg大学JGU MAINZ教授Katharina Landfester Max Planck聚合物研究所,Mainz Mainz Pol. Pol Besenius化学系,JGU Mainz Mainz教授Twan Lammers实验性分子成像,RWTH AACHEN ACHEN ACHEN ACHEN PROCH。功能垫。和生物制造,Würzburg大学
众所周知,材料的性能高度取决于其结构。对这种关系主题的研究始终是物质科学家的重点。由于其特殊的机械性能,较大的特定表面积,出色的电气/热传导3D网络以及特殊的多孔结构,因此已设计和应用多功能的层次纳米结构材料,用于各种材料系统,包括聚合物,金属,无机材料及其复合材料。研究材料的机械,电气,热和电化学特性的独特纳米结构的机制对于获取新知识和为开发新的高级材料铺平道路至关重要。因此,该领域的调查吸引了增加的研究兴趣。纳米材料特刊的目的是整理与设计和制造等级纳米结构材料及其各种应用领域的最新进步有关的最新贡献。
本书包含的信息均来自可靠且备受推崇的来源。我们已尽合理努力发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性或其使用后果承担责任。作者和出版商已尝试追踪本出版物中复制的所有材料的版权持有者,如果未获得以这种形式发布的许可,我们向版权持有者道歉。如果任何版权材料尚未得到承认,请写信告知我们,以便我们在将来的重印中纠正。
摘要:在发现X射线后,闪烁体通常用作诊断医学成像,高能物理学,天体物理学,环境辐射监测和安全性检查中的高能辐射传感器。常规闪烁体面临的内在局限性,包括闪烁的光的提取效率低和发射率低,导致商业闪烁体的效率小于10%。克服这些局限性将需要新材料,包括闪烁的纳米材料(“纳米激素”),以及提高闪烁过程效率的新的photonic方法,提高材料的排放速率,并控制闪烁光的光的方向性。在这种观点中,我们描述了新出现的纳米弹性材料和三个纳米光子平台:(i)等离子体纳米纳米菌 - (ii)光子晶体和(iii)高性能闪烁体的高Q跨面。我们讨论了纳米激素和光子结构的组合如何产生“超闪烁体”,从而实现最终时空分辨率,同时在提取的闪烁发射中可以显着提升。
将纳米技术集成到建筑行业,特别是在开发沥青和混凝土路面材料方面,具有增强基础设施性能和耐用性的巨大希望。 纳米材料的特征是其纳米级尺寸(通常小于100纳米)在人行道结构中越来越多地使用。 此摘要概述了各种纳米材料及其对道路建设的潜在影响。 在这种情况下,纳米材料等纳米材料,纳米粘土,碳纳米管,纳米碳黑色,纳米纤维,纳米纤维,纳米二氧化钛,纳米氧化铝和诺米氧化铝和氧化纳米锌。 这些材料由于其尺寸较小和表面积高,提供了独特的特性。 例如,纳米二氧化硅已经证明了其增强刚度,强度,寿命和抵抗力的能力,可在沥青路面中脱落和破裂。 纳米粘土增强了沥青和混凝土中的机械和热性能,从而提高了整体性能。 碳纳米管和石墨烯通过增强机械性能和减少裂纹而在混凝土路面中显示出希望。 此外,正在为人行道表面探索纳米涂料,从而提供诸如改善的滑动阻力,降低噪音,耐用性的提高和污染性的益处。 尽管存在潜在的优势,但仍存在挑战,包括对标准化测试和表征程序的需求以及将纳米颗粒纳入路面材料的初始成本。 关键字:工程,纳米材料,道路构建,技术简介将纳米技术集成到建筑行业,特别是在开发沥青和混凝土路面材料方面,具有增强基础设施性能和耐用性的巨大希望。纳米材料的特征是其纳米级尺寸(通常小于100纳米)在人行道结构中越来越多地使用。此摘要概述了各种纳米材料及其对道路建设的潜在影响。纳米材料等纳米材料,纳米粘土,碳纳米管,纳米碳黑色,纳米纤维,纳米纤维,纳米二氧化钛,纳米氧化铝和诺米氧化铝和氧化纳米锌。这些材料由于其尺寸较小和表面积高,提供了独特的特性。例如,纳米二氧化硅已经证明了其增强刚度,强度,寿命和抵抗力的能力,可在沥青路面中脱落和破裂。纳米粘土增强了沥青和混凝土中的机械和热性能,从而提高了整体性能。碳纳米管和石墨烯通过增强机械性能和减少裂纹而在混凝土路面中显示出希望。此外,正在为人行道表面探索纳米涂料,从而提供诸如改善的滑动阻力,降低噪音,耐用性的提高和污染性的益处。尽管存在潜在的优势,但仍存在挑战,包括对标准化测试和表征程序的需求以及将纳米颗粒纳入路面材料的初始成本。关键字:工程,纳米材料,道路构建,技术简介正在进行的研究和发展工作重点是应对挑战,并使这些创新更加实用,更具成本效益,以实施广泛的实施。纳米材料已成为改善道路建设的可行解决方案,为基础设施性能提供了好处,同时最大程度地降低了环境影响。
摘要 MXenes 吸引了方法和技术领域的研究人员,他们将其应用于各种应用,例如储能设备、超级电容器 (SC) 和弹性电池。由于其出色的自动化、物理化学、光学、电气和电化学效应,原始 MXenes 及其纳米材料在多种类型的 SC 中的应用正在不断增加。由于其出色的电气性能、更好的机械强度、不同的实用簇和充足的层间空间,MXene 基纳米材料 (NM) 已展示出强大的储能能力。在这篇评论文章中,我们展示了 MXene 基纳米材料 (NM) 在超级电容器 (SC) 中的合成方法和应用的时间表和进展。最后,我们以该领域的未来展望结束了主题。
摘要:微塑料(MPS)构成了深远的环境挑战,通过生物蓄积和生态系统污染的机制影响生态系统和人类健康。尽管传统的水处理方法可以部分去除微塑料,但它们的局限性凸显了需要创新的绿色方法,例如光降解以确保更有效和可持续的去除。本评论探讨了纳米材料增强光催化剂在解决此问题中的潜力。利用其独特的特性,例如大表面积和可调的带隙,纳米材料可显着提高降解效率。彻底总结了光催化剂修饰以改善光催化性能的不同策略,特别强调了元素掺杂和异质结构建。此外,本综述彻底总结了纳米材料促进的微塑料光降解的可能的基本机制,重点是自由基形成和单线氧化等过程。这篇综述不仅综合了现有研究中的关键发现,而且还确定了当前研究景观中的差距,这表明这些光催化技术的进一步发展可能会导致环境修复实践的重大进步。通过描述这些新颖的方法及其机制,这项工作强调了重要的环境含义,并有助于持续发展可持续解决方案以减轻微塑性污染。
1 University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India, 2 Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, 3 Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom农业,技术与科学大学(SHUATS),Prayagraj,印度北方邦,印度阿育吠陀研究所4,印度西孟加拉邦加尔各答,加尔各答,GMP提取设施5中心5 Colleges Jhanjeri集团(Mohali),Sahibzada Ajit Singh Nagar,印度旁遮普邦,7个生命,健康与环境科学系,L'Aquila University,L'Aquila,L'Aquila,L'Aquila,意大利8实验室生物技术,环境,环境,环境,环境与健康生物技术和微生物活动,君士坦丁兄弟大学,君士坦丁兄弟,阿尔及利亚,康斯坦丁,10号环境科学与工程系,广东 - 纽约市,以色列技术研究所,中国尚托,11 Instituto de InvestionesQuímicobiológicas,Michoilia de Sannicolia,ciudalgo墨西哥米京阿坎,墨西哥索诺拉岛12章,墨西哥索诺拉,墨西哥索诺拉,图形时代微生物学13