在过去十年中,纳米科学和纳米技术已成为全球研究和开发的变革性领域。纳米级材料操控技术的发展从根本上改变了材料、设备和系统的设计和理解方式。纳米技术基于原子级材料和系统的使用,具体来说是纳米级(一纳米等于十亿分之一米)[1]。纳米催化就是其潜力的一个明显例子,通过操控反应中心的尺寸、成分和形态可以精确控制化学反应。该子领域对反应动力学、工业过程和能源应用产生了重大影响[2]。本综述旨在探索纳米粒子的潜力,特别是它们在催化中的应用。过渡金属纳米粒子在有机反应和先进的工业过程中表现出卓越的催化活性。了解这些材料可以显著提高能源效率和可持续性[3]
引用张,F。(2023年11月7日)。对高级微颗粒和新实体的相互作用进行建模。摘自https://hdl.handle.net/1887/3656647
由金属芯和分子J凝聚糖物的有机壳组成的混合芯 - 壳纳米结构的光学特性取决于在壳中金属核心和Frenkel Expitons表面的等离子之间的电磁偶联。在具有强和超强等离子体的情况下 - 激子耦合,使用传统的各向同性经典振荡器模型来描述J种类介绍功能可能会导致理论预测与杂交NanAnoparticles的可用实验光谱之间的巨大差异。我们表明,这些差异不是由经典振荡器模型本身的局限性引起的,而是将有机壳视为光学各向同性材料。通过假设壳体中分子J-聚集的经典振荡器的切向取向,我们与TDBC涂覆的金纳米棒的实验灭绝光谱获得了极好的一致性,而这些射频的实验灭绝光谱无法用常规的各向同性壳模型来处理。我们的结果扩展了对金属(有机纳米颗粒的光学)物理效应的理解,并提出了这种混合系统理论描述的方法。
教育部药物靶向和药物输送系统的关键实验室和四川省,四川工程药物和四川药物精确工业技术中心,西中国药学院,四川大学,成谷610041,中国四川大学,中国
lspm,CNRS,巴黎大学13 Sorbonne ParisCité,99 AV。J.B.Clément,93430 Villetaneuse,法国。B LPICM,CNRS,Ecole Polytechnique,Palytechnique de Paris,Palaiseau,法国91128,法国。*通讯作者:karim.ouaras@polytechnique.edu摘要抽象的低压等离子体过程通常用于生长,功能化或蚀刻材料,并且由于其某些独特的属性,等离子体已成为某些应用(例如微电源)的主要参与者。但是,在纳米颗粒的合成和功能化方面,等离子体过程仍处于研究级别。Yet plasma processes can offer a particularly suitable solution to produce nanoparticles having very peculiar features since they enable to: (i) reach particle with a variety of chemical compositions, (ii) tune the size and density of the particle cloud by acting on the transport dynamics of neutral or charged particles through a convenient setting of the thermal gradients or the electric field topology in the reactor chamber and (iii) manipulate nanoparticles and deposit them directly在底物上,或与连续膜一起编码,以生产纳米复合材料,或(iv)将它们用作模板生产一维材料。在本文中,我们通过结合时间分辨和原位激光灭绝和散射诊断,QCL吸收光谱,质谱,质谱,光学发射光谱和SEM以及颗粒粒子转运模型,对低压微波等离子体中的纳米颗粒合成和动力学进行实验研究。我们首次展示了无电微波等离子体中粒子云的嗜热动力学。我们表明,这种作用与血浆组成中的特殊波动有关,并导致大部分血浆中的空隙区域形成,这些等离子体被颗粒云包围,并在周围性后造成的颗粒云中围绕。我们还揭示并分析了前体的分离和分子生长的动力学,从而在观察的nanoparticle nanapictical nanapticle中产生了分子生长。引言尘土或复杂的等离子体研究在诸如能源和环境等钥匙技术领域的背景下至关重要
了解胺与金纳米粒子表面之间的相互作用非常重要,因为它们在稳定纳米系统、形成蛋白质冠层以及制备半合成纳米酶方面发挥着重要作用。通过使用荧光光谱、电化学、X 射线光电子能谱、高分辨率透射电子显微镜和分子模拟,可以详细了解这些相互作用。本文表明,胺与纳米粒子表面 Au(0) 原子相互作用,其孤电子对的强度与校正空间位阻后的碱度呈线性相关。结合动力学取决于金原子的位置(平面或边缘),而结合模式涉及单个 Au(0) 和位于其上方的氮。一小部分仍然存在的表面 Au(I) 原子被胺还原,产生更强的 Au(0)-RN。 +(RN . ,失去一个质子后)相互作用。在这种情况下,结合模式涉及两个 Au(0) 原子,它们之间有一个桥接氮。当蛋白质参与(至少部分参与)金离子的还原时,可以更好地获得稳定的金纳米粒子,就像稳健的半合成纳米酶制备所需的那样。
聚苯胺纳米颗粒的电沉积作为超级电容器应用的高性能电极Radhika S. Desai 1,Vinayak S. Jadhav 1,Divya D LAD 1,Pramod S. Patil 2,3和Dhanaji S. Dalavi 1,Dhanaji S. Dalavi 1,*抽象导电聚合物的大量关注能量存储材料,以吸引能量存储材料。在这项研究中,我们提出了一种直接且无结合的方法,用于在钢基材上进行聚苯胺(PANI)膜的电沉积。通过优化沉积时间,我们成功合成了Pani纳米颗粒,从而导致了独特的形态和电化学特性。全面的结构和物理化学表征表明,在最佳沉积时间制备的Pani 15薄膜在1 M硫酸(H₂SO₄)电解质中以10 mV s -1的扫描速率显示出632.56 F G -1的显着特异性电容。这项研究展示了一种实用的方法,用于设计和合成高级电极材料,为增强储能应用中的性能铺平了道路。我们的发现强调了电沉积PANI膜作为超级电容器和其他相关技术的有效材料的潜力。
介孔二氧化硅纳米颗粒(MSN)由于其特性和应用多样化,特别是在纳米医学中引起了极大的关注。MSN的独特特性,例如其高表面积,可调孔径和多功能表面化学,使其成为各种生物医学应用的理想候选者。本综述旨在详细了解MSN,从合成和表征到其在生物医学中的多功能应用,强调其在推进医疗保健技术方面的巨大潜力。全面讨论了MSN的合成方法,强调了溶剂,碱基,碱性浓度和模板表面活性剂等参数对纳米结构的大小和形状的影响。讨论了不同类型的MSN,包括MCM-41,SBA-15,KIT-6和空心MSN,以及它们的合成协议和独特的特征。该评论还涵盖了各种光谱技术,例如XRD,XPS,FTIR,
a b s t r a c t纳米技术在过去40年中已经发展起来,没有显示出放慢速度的迹象。随着功能和设计纳米颗粒的发展,纳米技术已成为科学的重要领域。 借助纳米颗粒,食品的保质期可能更长,可以在细胞内提高疏水性药物分布,并且可以提高某些治疗方法(例如抗癌剂)的有效性。 纳米颗粒(NP)是尺寸范围为1至100 nm的材料。 确定纳米颗粒(NP)特性的关键因素是它们的尺寸和形状。 由于其较大的表面积和纳米级的大小,NP具有特殊的物理和化学特性。 危险还原剂通常用于在合成过程中将金属离子降低到未加成的纳米颗粒中。 尽管如此,近年来已经进行了几次尝试,用于开发绿色技术,使纳米颗粒使用自然资源而不是危险化学物质。 由于生物学方法是简单,廉价,安全,清洁且高效的,因此它们被绿色合成来合成纳米颗粒(NPS)。 这些生物合成的纳米颗粒具有广泛的潜在用途,包括靶向药物递送,DNA分析和基因治疗,癌症治疗,生物传感器,抗菌剂和磁共振成像(MRI)。 在本评论文章中,我们强调了纳米颗粒的不同方法,合成,应用,表征和未来前景,以提供进一步研究的参考。 目录随着功能和设计纳米颗粒的发展,纳米技术已成为科学的重要领域。借助纳米颗粒,食品的保质期可能更长,可以在细胞内提高疏水性药物分布,并且可以提高某些治疗方法(例如抗癌剂)的有效性。纳米颗粒(NP)是尺寸范围为1至100 nm的材料。确定纳米颗粒(NP)特性的关键因素是它们的尺寸和形状。由于其较大的表面积和纳米级的大小,NP具有特殊的物理和化学特性。危险还原剂通常用于在合成过程中将金属离子降低到未加成的纳米颗粒中。尽管如此,近年来已经进行了几次尝试,用于开发绿色技术,使纳米颗粒使用自然资源而不是危险化学物质。由于生物学方法是简单,廉价,安全,清洁且高效的,因此它们被绿色合成来合成纳米颗粒(NPS)。这些生物合成的纳米颗粒具有广泛的潜在用途,包括靶向药物递送,DNA分析和基因治疗,癌症治疗,生物传感器,抗菌剂和磁共振成像(MRI)。在本评论文章中,我们强调了纳米颗粒的不同方法,合成,应用,表征和未来前景,以提供进一步研究的参考。目录
使用CRISPR / CAS实施治疗性体内基因编辑,依赖于基因编辑工具的有效输送。由CAS蛋白和单个指南RNA(SGRNA)组成的核糖核蛋白(RNP)复合物提供了短期的编辑活性和安全优势,而不是惯性病毒和非病毒基因和RNA Delivery方法。通过工程慢病毒衍生的纳米颗粒(LVNP)促进RNP的递送,我们证明了SPCAS9以及SPCAS9衍生的基础和Prime Editor(BE / PE)的有效施用,从而导致受体细胞中的基因编辑。独特的GA G / GA GPOL蛋白融合策略促进了LVNP中的RNP包装,并确定LVNP stoichiometry y支持优化的LVNP收益率和治疗有效负载的纳入。我们将在4天内进行瞬时目标DNA C LEAV年龄,并在4天内完成RNP周转。结果,与培养细胞中标准的d rnp nuc Leofection相比,LVNP降低了靶向dna c leav年龄和tale of tar clea族的活性。lvnps可容纳be / sgrna和pe / epegrna rnps,导致基础编辑,旁观者编辑和质量编辑降低而无需检测到的indel indel形成。值得注意的是,在鼠标眼中,我们介绍了LVNP指导的体内基因破坏的第一个概念概念。我们的发现建立LVNP作为促进的车辆或促进RNP的交付