hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
最初发表于:Alphandéry, Edouard (2020)。用于治疗应用的氧化铁纳米粒子。《今日药物发现》,25(1):141-149。DOI:https://doi.org/10.1016/j.drudis.2019.09.020
目标:这项研究评估了salvia officinalis(SAGE)的银纳米颗粒(AG NP)和水醇提取物如何影响血管内皮生长因子(VEGF)和基质金属蛋白酶2(MMP2)基因的血管内皮生长因子(VEGF)的表达水平,在伤口中起作用。方法:在48名成年雄性小鼠的背面诱导切除伤口。用AGNP和Salvia officinalis提取物在单独的动物组中进行14天的伤口治疗。在治疗两周后,去除伤口皮肤组织,并通过实时聚合酶链反应进行基因表达分析。结果:结果表明,与对照的伤口皮肤相比,用0.05%Ag NP处理的伤口皮肤中两个靶基因(VEGF和MMP2)的表达显着增加。与凡士林组相比,用鼠尾草提取物处理的伤口组织中VEGF基因的表达显着增加,但MMP2基因的表达并未发生显着变化。与单独用0.5%SAGE提取物治疗的伤口组织相比,用0.5%SAGE提取物和0.05%Ag NP处理的伤口组织中的两个靶基因表达显着增加。与单独用0.05%Ag NPs治疗的人相比,用SAGE提取物和AG NP处理的伤口组织中两个靶基因的表达没有显着差异。结论:基于上述结果,可以得出结论,鼠尾草和低剂量的AG NP的水醇提取物的组合表现出明显的愈合活性,并且可以作为伤口愈合管理的可行选择。
治疗药物的有效和特定于现场的递送仍然是癌症治疗中的一个至关重要的挑战。传统的药物纳米载体(例如抗体 - 药物缀合物)通常由于成本高而无法使用,并且可能导致严重的侧面影响,包括威胁生命的过敏反应。在这里,通过使用创新的双重印迹方法制造的超分子代理的工程来克服这些问题。开发的分子印刷纳米颗粒(纳米虫)的目标是雌激素受体Alfa(ER 𝜶)的线性表位,并用化学治疗药物阿霉素加载。这些纳米纳米具有成本效率和竞争性的ER 𝜶商业抗体的功能。在大多数乳腺癌(BCS)中过表达的材料与ER 𝜶的特定结合后,通过受体介导的内吞作用实现核药物的递送。因此,在过表达ER 𝜶的BC细胞系中引起了显着增强的细胞毒性,为BC的精确治疗铺平了道路。通过在复杂的三维(3D)癌症模型中评估其药物效应的临床使用概念概念,该模型捕获了体内肿瘤微环境的复杂性而无需动物模型。因此,这些发现突出了纳米元作为一种有希望的新型药物化合物用于癌症治疗的潜力。
必须精确控制微米和纳米粒子的合成以获得所需的形状和组成,因为这些特性会深刻影响它们的应用效果。大量文献旨在通过改进合成程序不断改进这些材料的结构 / 功能。其中,越来越多的化学领域专注于绿色合成方法,以提供更可持续的替代方案,同时保持粒子的生物活性。例如,本研究主题研究了使用印度楝 (neem) 提取物合成的氧化镁 (MgO) 纳米粒子 (Al-Harbi 等人)。制备的 MgO 纳米粒子在热和生物介质下表现出显着的稳定性,同时具有显着的抗氧化、抗炎和抗菌特性。与这种对更环保的工艺和材料的搜索相一致,另一项特色研究回顾了用于组织工程的基于丝素的支架的开发 (Ma 等人)。蚕丝是由超过 20 万种节肢动物生物合成的,其中包括家蚕蛾,它的蚕丝是
根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。 因此,寻找新颖的诊断和治疗方法至关重要。 使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。 尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。 因此,寻找诊断和治愈疾病的创新方法至关重要。 尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。 由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。 当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。 最后,本综述总结了AUNPS前景的局限性。根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。因此,寻找新颖的诊断和治疗方法至关重要。使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。因此,寻找诊断和治愈疾病的创新方法至关重要。尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。最后,本综述总结了AUNPS前景的局限性。
本研究调查了使用黑曲霉培养滤液生产氧化锌纳米粒子 (ZnO NPs) 作为一种可持续且环保的方法,将其与碳酸锌溶液结合。使用透射电子显微镜 (TEM)、能量色散 X 射线衍射 (EDX)、扫描电子显微镜 (SEM) 和傅里叶变换红外光谱 (FT-IR) 检查生产的 ZnO 纳米粒子。表征数据验证了高度结晶的 ZnO NPs 的产生,平均尺寸范围为 27 至 40 纳米。研究了 ZnO NPs 在理想温度下对赭曲霉和黑曲霉生长的影响。在剂量分别为 0.25%、0.5% 和 1% 时,黑曲霉和赭曲霉分别导致 56%、81% 和 87% 的真菌生长抑制和 64%、71% 和 86% 的真菌生长抑制。在最高 ZnO NPs 浓度下,观察到最大抑制率。这项研究凸显了黑曲霉作为生物工厂生产 ZnO 纳米颗粒的潜力,这些纳米颗粒在农业和其他领域具有广阔的应用前景。环保的合成方法,加上合成的 ZnO 纳米颗粒的抗真菌特性,为植物病害管理提供了一种可持续且环保的传统杀菌剂替代品。
摘要简介:法定感应(QS)使细菌能够协调整个菌落活动,包括与感染相关的活动。法定人数淬火(QQ)抑制QS,是控制细菌感染的一种有前途的方法。已经进行了几项体外实验,以鉴定纳米颗粒(NP)为潜在的Quorum淬火抑制剂。本综述研究了纳米颗粒对法规淬火的潜力,重点是伤口病原体的QS调节的致病性。材料和方法:进行了观察性研究,以探索纳米颗粒对法规淬火病原体的能力。结果:对观察性研究的综述表明,纳米颗粒针对伤口病原体具有明显的群体猝灭能力。已证明许多纳米颗粒,包括银,金和氧化锌,可以抑制QS调节的活性,从而降低细菌毒力和生物膜的形成。这些结果表明,纳米颗粒可以用作减轻细菌感染并增强伤口愈合的有效药物。结论:纳米颗粒作为Quorum Quorch剂显示出巨大的潜力,有效地降低了伤口病原体中细菌毒力和生物膜形成。这些结果表明纳米颗粒在管理细菌感染和改善伤口愈合中的有希望的应用。1因此,细菌种群可以同步几个基因的表达以同时反应。2当特定细胞关键字:群体传感,法定人数淬火,伤口病原体,纳米颗粒引入细菌细胞具有通过产生和检测细胞外化学物质(自动诱导剂)的能力,可以被动地或活跃地通过细胞膜,称为Quorum Sensing(QS)。当它们的浓度达到特定的阈值时,自动诱导剂(AI)与具有QS系统的细菌中的转录调节剂互动,从而改变了遗传表达模式。
这项工作确立了用茴香提取物制造的铜纳米果(Cunps)的细胞毒性,抗氧化剂和抗癌作用,尤其是在非小细胞肺癌(NSCLC)上。cunps以两种NSCLC细胞系A549和H1650以剂量依赖性方式引起细胞毒性。在100μg/mL时,CUNPS在A549细胞中降低到70%,H1650细胞中的65%。显示出细胞毒性作用(p <0。05)。乳酸脱氢酶(LDH)相应地在细胞中以很高的比例存在,在测试时证明。及其细胞毒性特性,Cunps表现出较高的抗氧化活性。当纳米颗粒的浓度高(100μg/ml)时,浓缩氧(ROS)的比率降低了多达50%,这反过来又表明抗氧化活性。有很多证据表明Cunps具有抗癌潜力。分子对PI3K/AKT/MTOR途径的影响已经表明,这是对癌症存活至关重要的途径之一。Western印迹分析和QRT-PCR结果表明,在CUNP暴露时,该途径中蛋白质会广泛降解。有趣的是,以100μg/ml的磷酸化下降了高达75%的PI3K,AKT和MTOR(P <0。001)。总之,这些发现说明了CUNPS治疗作用背后的机制,从而使它们成为NSCLC治疗的良好靶标。Cunps具有细胞毒性和抗氧化能力,以及肺癌途径的重大改变,因此可以将其视为抗癌候选者。
使用病毒载体(例如AAV)实现了体内基因编辑,但是这些稳定的基于DNA的载体导致Cas9核糖核酸酶和SGRNA在细胞7中的长期表达。虽然扩展到编辑机械的接触可能有利于基因校正率,但它也可能导致脱靶遗传改变的积累8,9。此外,AAV CAPSIDS的免疫原性触发中和抗体和T细胞反应限制了基于AAV的治疗方法的重复给药10;但是,由于较高的细胞周转率11,肺中的基因编辑受益于重复给药。此外,尺寸限制对将有效的Pyogenes CRISPR-CAS9(SPCAS9)构建体构成了挑战,将其限制到AAVS 12中。可以通过非病毒,基于mRNA的递送平台来克服这些局限性,该平台能够瞬时表达并重复给药13。LNP是最先进的非病毒载体,如Moderna和Pfizer/Biontech开发的广泛接受的mRNA疫苗技术所见,并在Cas9肝基因编辑平台14-16中显示出巨大的希望。然而,尚未报告基于LNP的CAS9递送系统,用于有效的肺基因修饰。与肝脏相比,由于其专门的细胞类型,粘液屏障和粘膜缩减清除率,肺部对分娩构成了独特的挑战。因此,由于大多数病毒和非病毒方法17,气道上皮仍然很差,因此仍然需要采取有效的方法。
