识别靶DNA,然后使用核酸内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3通过使用CRISPR/CAS9 DNA(可以编码Cas9的质粒DNA和病毒基因组),mRNA或蛋白质获得了成功的基因编辑活性。4,5通常,CAS9/ SGRNA RNP复合物的直接递送是近年来最广泛的方法,因为其快速作用,高基因编辑效率,低邻靶效应和免疫反应。6然而,对于基于RNP的治疗剂的所有优势,仍然存在一些挑战。目前,物理方法(电力,显微注射等)和病毒载体(腺病毒,腺病毒相关病毒等)仍然是主要的交付策略。7,8尽管已经报道了一些非病毒基纳米载体,例如DNA纳米载体,9张阳离子脂质或聚合物,10和黑磷11用于RNP递送,但它们仍然难以实现,无法实现在体外和体内进行效率的基因。一般而言,需要考虑三个交付过程。首先,CRISPR/CAS9 RNP尺寸较大,表面高度高,因此很难将其凝结成小尺寸或封装。12
基因疗法。1 - 7具有12种不同的人类血清型,它们都与任何人类疾病有关,有效地转移了大量分裂和非分散细胞,从而允许转基因的延长表达。此外,AAV会触发最小的先天免疫反应,并且本质上复制不足。由于这些吸引人的特征,AAV是体外和体内环境中基因传递的高度有利向量。迄今为止,FDA已批准了五种基于AAV的基因治疗药物,这些药物解决了各种遗传疾病:8 - 13 Luxturna,一种用于遗传性视网膜疾病的AAV2药物; Zolgensma,一种用于脊柱肌肉营养不良的AAV9药物; Hemgenix,一种用于血液Philia b的AAV5药物; Roctavian,一种用于血友病A的AAV5药物;和Elevidys,一种AAVRH74药物,可治疗Duchenne肌肉发育不良。正在进行许多其他临床试验,显示出令人鼓舞的结果。3
复杂的实体瘤微环境(TME)包括大量基质细胞,包括内皮细胞,与癌症相关的成纤维细胞,与肿瘤相关的宏观噬菌体(TAMS)等。1 TME的免疫抑制性质为充分意识到免疫疗法的特性潜力带来了主要障碍。此外,大多数实体瘤的特征是构成胶原纤维和成纤维细胞的致密基质,它们建立了阻碍免疫刺激细胞内肿瘤内浸润的屏障,并且治疗剂以及肿瘤细胞的效率消除。2在免疫抑制性TME中,TAM在组织稳态中扮演多方面的角色,有助于多种功能,例如清除,吞噬作用和炎症调节;这些功能可以作为肿瘤免疫疗法的潜在方法来利用。TME中的3,4个主要TAM是to肿瘤的; TAMS在促进自适应免疫和促进肿瘤特异性免疫抑制中起着至关重要的作用。TAM通过各种机制有助于肿瘤的影响,包括转移和遗传不稳定性的促进,癌症干细胞成熟的帮助以及适应性免疫的调节。此外,TAMS在癌症相关炎症(CRI)中起着至关重要的作用。3因此,由于TME中存在免疫抑制性TAM而导致的临床结果不良之间的相关性强调了关键
综合纳米科学研究所,莱布尼兹·伊夫·德累斯顿(Leibniz ifw Dresden),赫尔姆·霍尔特斯特拉斯(Helmholtzstraße)20,01069德累斯顿,德国。电子邮件:m.medina.sanchez@ifw-dresden.de B研究中心,纳米姆布兰氏菌(MAIM),Rosenbergstraße6,Tu Chemnitz,Tu Chemnitz,09126 Chemnitz,德国Chemnitz,德国Chemnitz,德国C曼彻斯特癌症研究中心,癌症科学,癌症科学,科学,科学,科学,及英国M20 4GJ的Wilmslow Road 555号。电子邮件:Christine.schmidt@manchester.ac.uk D孕产妇和胎儿健康研究中心,发育生物学和医学部,医学科学学院,曼彻斯特大学曼彻斯特学术健康科学中心,曼彻斯特大学曼彻斯特曼彻斯特曼彻斯特曼彻斯特市医院M13 9WL,UK MARIDE STINTER,M13 NEFTICE NEFICTION曼彻斯特学术健康科学中心生物学,医学与健康学院,ST St.曼彻斯特学术健康科学中心,曼彻斯特,M13 9WL,UK
如今,纳米技术几乎已成为家喻户晓的词汇,或者至少是一些带有“纳米”的词汇,如纳米尺度、纳米粒子、纳米相、纳米晶体或纳米机器。这一领域如今受到全世界的关注,国家纳米技术计划 (NNI) 即将启动。这一领域的起源可以追溯到 20 世纪 70 年代和 80 年代对活性物质(自由原子、团簇、活性粒子)的研究,以及新技术和仪器(脉冲团簇光束、质谱创新、真空技术、显微镜等)。人们对此兴奋不已,并蔓延到包括化学、物理、材料科学、工程和生物学在内的不同领域。这种兴奋是有道理的,因为纳米材料代表了物质的新领域,有趣的基础科学以及对社会有用的技术的可能性是广泛而真实的。尽管人们对纳米材料很感兴趣,但仍需要一本服务于基础科学界,尤其是化学家的书。本书的编写首先是为了作为“纳米化学”高级本科或研究生课程的高级教科书,其次是为了作为化学家和其他在该领域工作的科学家的资源和参考。因此,读者会发现这些章节是按照教师教授该科目的方式来编写的,而不仅仅是参考书。因此,我们希望本书能够用于教授纳米技术、材料化学和相关学科的许多高级课程。本书的内容如下:首先,详细介绍了纳米技术并简要介绍了历史。接下来是 Gunter Schmid 撰写的关于纳米金属的精彩章节、Marie Pileni 撰写的关于半导体的精彩章节以及 Abbas Khaleel 和 Ryan Richards 撰写的关于陶瓷的精彩章节。接下来的章节将更多地讨论特性,例如 Paul Mulvaney 的光学特性、Chris Sorensen 的磁性、编辑和 Ravi Mulukutla 的催化和化学特性、Olga Koper 和 Slawomir Winecki 的物理特性,以及 John Parker 的关于纳米材料应用的简短章节。编辑非常感谢这些章节的贡献作者,他们是这一新兴纳米技术领域的世界知名专家。他们的热情和辛勤工作值得赞赏。编辑还感谢他的学生和同事以及家人的帮助,感谢他们的耐心和理解。Kenneth J. Klabunde
由于胶片摄像头被替换为数码相机,因此追求小像素大小进入亚微米尺度以满足高分辨率成像的需求是一个主要趋势。1,2图像传感器的像素大小的收缩(ISS)引发了严重的信噪问题,并带来了常规光学组件的挑战。3最近通过应用各种纳米光学效应,包括超普通变速器(EOT),4个金属纳米antennans,5 Fano共振,6个MIE共振,7和指导模式共振(GMR)来设计结构性色过滤器。8与基于材料吸收的常规染料颜色过滤器相比,结构颜色技术通过人工微/纳米结构实现光谱滤波,具有互补金属的优势 - 氧化物 - 氧化物 - 轴导剂(CMOS)过程兼容性,稳定性,稳定性和抑制空间颜色crosstalk。9尽管已经进行了彻底的研究以探索基本物理学,但10种高质量的材料11并优化了结构色技术的制造和集成方法12,但没有一个可以在光传输效率(〜90%)和颜色纯度方面击败染料色过滤器。13此外,大多数结构颜色过滤器都是
我们介绍了新的基于奎诺林的共价三嗪框架(quin-ctf)的设计和合成,该框架将两个光活性片段结合在其结构(三嗪和喹啉部分)之内。通过将这种CTF材料与氟二氧化钛(F-TIO 2)杂交,我们准备并表征了具有增强性能的光催化剂,从而利用了两个成分之间的协同作用,以使水中的污染物光降解在水中。该F-Tio₂@CTF杂交系统被评估用于甲基蓝色染料的光催化降解和药物化合物,例如环丙沙星作为模型水污染物。含有少量CTF(0.5、1和2 wt。%)的杂种材料达到了显着的光降解效率,其表现明显优于其单个对应物。使用F-TIO 2催化的此类过程中涉及的反应性氧化剂(ROS)与使用原始Quin-CTF或其混合材料时所涉及的反应性氧化物种不同。此外,杂种材料表现出可重复使用性,可在多个周期内保留高光催化活性。因此,这项工作强调了一种有希望的策略,即通过将少量基于CTF的系统(例如二氧化钛)纳入少量基于CTF的系统来设计具有成本效益且环保的光催化系统,从而提供了可持续且有效的解决方案,以缓解水污染。
预计在TIO 2 IO结构中引入AU NP会导致光催化剂,并在可见的光谱范围内具有增强的光吸收和改善的质量传输特征。Au nps与TiO 2的邻近性具有LSPR和电荷转移22-25,因此很可能是光催化性能。因此,在TiO 2 IO结构中实现对AU NP位置的控制至关重要,这对于介绍NP如何嵌入影响光催化的效率至关重要。在这项工作中,我们提出了一种共同组装策略,可以精确地将Au NP定位在TiO 2 IO矩阵上或内部,并通过使用探针反应的甲基蓝色的光催化降解来评估NP放置对结果的催化活性和NP稳定性的影响。
Park Systems Corporation 是纳米级显微镜和计量解决方案制造领域的行业领导者。其全面的产品系列包括原子力显微镜 (AFM)、白光干涉仪 (WLI)、纳米红外光谱 (NanoIR) 和成像光谱椭圆偏振仪 (ISE) 系统。公司对卓越的承诺促成了多项突破性创新的开发,包括真正的非接触式成像、3D 计量和全自动 AFM 系统,这些创新能够满足研究和工业需求。Park Systems 产品在科学研究、纳米工程、半导体制造和质量保证领域具有广泛的应用潜力。公司持续的奉献精神使 Park Systems 成为领先半导体公司、知名科研大学和国家实验室最青睐的纳米计量产品供应商。