图2。(a)使用THZ-SNOM设备测量的散射THZ信号的空间映射;图像16×16μm2。丝带的宽度为𝑤= 3.4 µm,它们被空间隙隔开0.5μm;阵列的周期为𝐿= 3.9 µm;石墨烯填充分数为87%。(b)石墨烯丝带研究阵列的AFM高度轮廓(5×5 µm的高分辨率图像!);明确观察到由于SIC露台步骤而引起的高度变化。(c)同一区域的高分辨率Thz-snom图像。在此视图中,我们还区分石墨烯丝带中的SIC Terrace步骤。(d)对AFM记录的样品高度与在扫描过程中沿面板中指示的绿色水平线扫描期间获得的样品高度之间的比较(b,c)。对于散射的THz信号,减去背景(直线);减去背景的水平为〜9,(d)中绘制的Thz信号幅度表示使用相同的比例相对于此值的变化。
急性和慢性肾脏疾病对个人和公共健康造成沉重负担,而且发病率持续上升。尽管如此,并且人们高度关注疾病机制的研究,但很少有新的治疗方法推广到临床。部分原因是许多(如果不是大多数的话)治疗方法对于肾小球或肾单位内的肾脏疾病部位的药理学效果不佳。考虑到这一点,在过去十年中,更具体地说是在过去两年中,纳米颗粒系统在将治疗药物输送到肾脏疾病部位方面取得了重大进展。在这里,我们概述了为改善肾脏疾病治疗发展而开发的各种纳米材料类别、用于提供肾脏积累的策略,以及它们所关注的疾病模型(如果有的话)。然后,我们重点介绍一种特定的系统,即聚合物中尺度纳米颗粒,该系统已在 13 篇出版物中得到广泛使用,与其它器官相比,其对肾小管上皮的靶向特异性高出 26 倍。虽然过去几十年来已有多种纳米药物进入临床,包括基于 mRNA 的冠状病毒疾病疫苗等,但没有一种是专门针对肾脏疾病的。总而言之,我们相信,纳米级肾脏靶向技术的快速发展以及临床医生、科学家、工程师和其他利益相关者的共同关注将在未来十年内推动其中一种或多种技术进入临床试验。
阿塔尔·比哈里·瓦杰帕伊 - 印度信息技术与管理学院瓜廖尔分校 (ABV-IIITM Gwalior) 是印度首屈一指的学院,由印度政府人力资源与开发部 (MHRD) 于 1997 年创办,是信息技术与管理领域的卓越中心。它是上述领域提供优质高等教育的领先学院,位于印度中央邦北部的瓜廖尔市。学院活动旨在通过高度竞争的学术环境以及学院与企业界之间的密切互动来发展探究和研究文化。学院与业界保持着活跃的联系。学院通过了 ISO 9001:2008 和 NAAC “A” 认证。它还被印度政府宣布为国家重要学院。在 2017 年印度尼西亚大学评估的 UI 绿色指标世界大学排名中,该学院在全球排名第 164 位,在印度排名第 1 位。该学院在 2022 年绿色排名中还位列印度第 6 位,NIRF 工程类别排名为第 78 位。
MIT.nano 的特性分析套件包含一系列高灵敏度显微镜和其他仪器。我们最先进的工具支持表面和界面的维度科学、高级成像光谱(环境、低温和原位)以及纳米级分析。与 MIT.nano 的其他部分一样,用户群来自广泛的兴趣领域。仅在全面运营的第一年,来自 12 个不同学术部门的 160 名用户以及来自行业和其他机构的外部用户就利用我们的仪器推进他们的调查。
新沉积的介电材料的质量控制是 nanoTDDB 使用的另一个例子。具体来说,当使用原子层沉积 (ALD) 制备薄氧化膜时,需要对该过程进行微调以产生可重复的结果。这里用 ALD 制备二氧化硅膜,并用椭圆偏振法测量其厚度。由于在晶圆的不同位置观察到一些膜厚度变化,因此使用 Jupiter XR AFM 进行 nanoTDDB 测量以测量膜的电性能。使用 AFM 软件中编程的自动程序在晶圆的各个位置进行测量。
光学非转录表现为相反的激发方向的光的传播差异。非重生光学器件传统上是通过基于法拉第旋转的相对较大的组件(例如光学隔离器)实现的,从而阻碍了光学系统的微型化和整合。在这里,我们通过跨表面的自由空间非偏置传输,该跨表面由由二氧化硅与二氧化钒杂交的二维纳米孔阵列组成(vo 2)。这种效果来自谐振器支持的MIE模式之间的磁电耦合。纳米孔子的非转化响应无需外部偏见而发生;取而代之的是,互惠因触发vo 2相变的入射光即以一个方向的速度而损坏。非偏置传输是在λ= 1.5 µm附近的电信范围内覆盖100 nm以上的宽带。每个纳米架单位电池的体积仅占据〜0.1λ3,跨表面厚度的测量约为半微米。我们的自偏纳米唱片剂在150 w/cm 2或每纳米甲孔子的速度上表现出非股骨的强度下降到非常低的强度。我们估计皮秒级传输降落时间和亚微秒尺度的传输升高。我们的示范将低功率,宽带和无偏见的光学非转录带给纳米级。
摘要:长期以来,显微镜技术的进步一直推动着神经科学的重大进步。超分辨率显微镜 (SRM) 也不例外,它以打破光学显微镜的衍射障碍而闻名。SRM 可以实现纳米结构的解剖设计和动力学,而这些是传统光学显微镜无法解决的,从神经元和神经胶质细胞的精细解剖结构到它们内部的细胞器和分子。在这篇评论中,我们将主要关注一种特定的 SRM 技术(STED 显微镜),并解释我们多年来为使其在神经科学领域实用和可行而取得的一系列技术进展。我们还将重点介绍关于神经元和神经胶质细胞动态结构-功能关系的几项神经生物学发现,这些发现说明了活细胞 STED 显微镜的价值,尤其是当与其他现代方法相结合时,可以研究脑细胞的纳米级行为。
纳米尺度的材料表面和界面已成为跨学科研究的引人入胜的主题,因为过去20年中许多有希望的应用。高度复杂的技术和新颖的材料家族已经出现了爆炸性的增长和令人信服的催化功能(Jiang等,2021),能源(Janek and Zeier,2016年),环境科学,环境科学(Kartal,2010年),生物医学,生物医学(Zhang et al。。在观察到的材料表演背后发展理论对于该跨学科领域的可持续成功以及成功实施新材料和过程中的下一代高级材料也至关重要。在本期特刊中,我们介绍了纳米级内材料表面和接口的结构,属性和技术应用的研究。该集合专用于跨学科的研究论文,将材料科学,生物学科学和化学的知识和实践整合到关键应用中。本期特刊中包含了两篇研究论文和三个评论,该论文为读者提供了纳米级材料表面和接口的理论和技术的选定案例,可以在各个方面有助于材料化学的进步。第一本研究文章由捷克共和国Palacký大学Olomouc的Michal Otyepka小组撰写,重点介绍了材料表面和界面的纳米结构。合成的石墨烯铁碳化物杂种具有纳米级孔径的分层结构。Chenxuan Wang的小组,来自这种新颖的结构导致令人着迷的性能,并在抗坏血酸内检测多巴胺时具有令人满意的检测极限。这表明材料表面和接口上的纳米结构对于高级材料的出色性能至关重要。第二篇研究文章由北京化学技术大学的成本HE组撰写,专注于材料表面和界面的技术应用。通过尖端的单分子力光谱观察到二氧化硅结合肽SB7和玻璃表面之间的相互作用力,并且通过分子动力学模拟揭示了以下理论。本研究表明,适当的技术的选择是揭示纳米级材料表面和界面的奥秘,从而区分新材料的性能。三篇评论文章强调了材料科学,与生物相关的科学和化学的结合,并在表面和生物医学应用的界面上结合在一起。
本文报告了基于氮化铝(ALSCN)的设计,制造和实验验证,基于下一代内在计算机中的多重元素(MAC)操作。女性乘数利用ALSCN中的铁电偏振开关改变了压电系数(D 31),促进了神经网络中的权重的非挥发性,模拟记忆存储。然后,使用膜的压电参数来更改电容差距进行读数。在100V V P(5MV/cm)的电压下,铁电薄膜可以部分极化,并达到216 µC/cm 2的峰值残余极化。对光学测量位移的实验结果证实了ALSCN Unimorph乘数的操作。最大共振模式位移线性取决于极化和输入电压。这项工作为在内存计算中利用ALSCN的利用提供了基本见解,开放了用于高速,低功率和高精度计算应用程序的新途径。
研究 她的研究领域是材料物理学。这是一个高度跨学科的领域,需要从物理学、化学、材料科学和工程学的角度进行研究。她的研究目标是应用材料合成(通常在极端条件下)、成分调整和晶体生长(更好的晶体通常是一种新材料)的实验工具来解决先进功能材料中的前沿问题。她的努力致力于 (1) 开发具有有趣特性的新型量子材料(超导性、量子磁性、非平凡拓扑、热电和多铁性),(2) 研究物理特性:电荷、自旋和热传输、磁化、比热、微观(磁力显微镜、扫描隧道显微镜、透射电子显微镜)和光谱(角分辨光发射和中子散射)测量,以及 (3) 与理论家/计算科学家合作,以在原子层面上理解观察到的现象。她的研究成果已发表 255 多篇经过同行评审的期刊文章,被引用超过 11,000 次。