我们的下一个棕色包将于3月7日(星期四)上午10点在NRF 115和Zoom举行。请注意我们典型的棕色袋子会议的调整时间。Tescan代表将提供一个演示,此调整后的时间允许与工具运营商进行实时会话。代表将向我们传授有关他们将EDS功能纳入CT扫描的新的CT工具的信息。请考虑亲自加入我们,向这些来宾演讲者表示感谢。目前我不能保证任何事情,但是可能会有一个人的零食。
当前下一代医学面临的挑战刺激了治疗诊断药物的快速发展。这些对于癌症等疾病来说越来越重要,因为没有两个病人会具有完全相同的生物标志物和致癌突变,而且目前大多数治疗药物的靶标选择性有限、定位性差、副作用不良。治疗诊断药物可以基于与靶向部分(如抗体)结合的小分子;基于工程哺乳动物细胞;以及基于各种类型的纳米粒子(例如氧化铁、金、聚合物或脂质体)。1 虽然所有这些都有局限性,2 但基于脂质体的纳米粒子有几个关键优势。这些包括能够设计多模纳米粒子,这些纳米粒子包含或附着在单个脂质体上,具有多种功能:快速的细胞摄取;广泛的细胞相容性和低毒性;以及较长的循环半衰期和最终的生物降解性。3
1. 简介 金属氧化物半导体场效应晶体管 (MOSFET) 是集成电路中使用的主要组件。在过去的二十年里,它已经过时了。随着技术创新,基于硅 MOSFET 的电子设备和电路始终提供效率提升和成本节省,以及系统设计的稳健性 [1][2][3]。CMOS 技术是微芯片生产环境中最有前途的创新之一,它通常用于构建 CPU 的多个不同应用领域,电子设备理应充分利用这些新技术,因为它在集成电路设计中具有许多显著的优势 [9]。在当今的数字存储器中,P 通道和 N 通道半导体系统都用于此应用 [9]。CMOS 系统是当今最常见的 MOSFET 技术之一 [3]。这是微控制器、微处理器模块、存储器和集成电路的主流半导体技术,其用途独特 [4-5]。图 1 显示了从 2005 年到现在的扩展趋势 [15]。
数十年来,光学近场显微镜促进了对纳米级光子激发的开创性研究。近年来,Terahertz场的近场显微镜已成为涉及语音和电子现象,丰富时空动力学和高度非线性过程的实验的重要工具。建立在这个基础上,这种观点阐明了Terahertz近场显微镜提供的变革机会,以探测超快相变的探测,有助于应对以前无法访问的凝聚态物理学的挑战。激光驱动的相位转变在许多系统中都伴随着具有时空特征的Terahertz脉冲,该脉冲受相变的复杂物理学控制的。使用Terahertz近场微副本技术对这些发射的脉冲的表征可以支持对超快相变动力学的研究。这种方法可以例如,允许量子材料中超快拓扑转换的观察者,展示其阐明相位变化的动态过程的能力。
与薄膜电池不同,6限制为6 cm 2的6个限制,大量LLZO可以实现高功率和能量应用。然而,最近在SE/ CC报告中调查了LI成核行为的最新研究表明,LI镀以不均匀的形态,导致高度异质的界面。8,9这将抑制锂作为膜状阳极的生长,从而导致出乎意料的过早短路。8–10有趣的是,当SE表面通过人工互层(例如AGC,11 AG,12-14或AU)修饰时,锂生长特性可以显着改善。15–17这些材料与锂的合金合金非常接近Li/Li +氧化还原反应,从而抑制了成核屏障。15,18这与Si或SN的情况相反,19,20,在与锂合金合金的同时发生了重大的结构变化。因此,在电池运行过程中,Ag或Au Interlayer的作用可能会有效地调节CC处的锂沉积,作为用于同质锂再分配的一种动态缓冲层。15,18
纳米级和特定的光学相互作用在纳米级的相互作用是一个迅速提高科学意义和技术相关性的话题。纳米级光 - 物质相互作用对于在生物光收集系统中的光转化为化学能以及人工光伏设备中的光到电流转换至关重要。这些相互作用定义了金属纳米结构的相当惊人的线性,尤其是非线性光学特性,因此是理解和操纵纳米级在表面等离子体(SP)激发形式的纳米级定位的关键。这种光定位现象正在发现,从癌症治疗和水分分裂或光催化的根本性相关应用到一般而言,到单分子(Bio-)传感。在用超短,飞秒的光脉冲照明金属纳米结构时,很容易达到局部局部强度,这些强度很容易产生高谐波辐射或将这些颗粒中的电子驱动到这些颗粒中,从而产生femtosecond Electon Electon Electron Electrone Electigrightimah intrighighighighightightige intrighightightimah rections intrighightightige sirtighightigh。混合纳米结构,包括金属,半导体和/或分子聚集体,可以在超快开关中找到全新的应用,或设计具有前所未有敏感性的新的光子晶体管。钻石纳米颗粒中氮空位的电子自旋激发是精心敏感的磁性传感器,在将来的信息处理中作为量子位有趣。在聚合膜上沉积金属纳米结构时,SP激发可能会导致局部光聚合,这可用于探测光学接近纤维或研究纳米级的光化学。纳米级光学的所有这些和许多其他新兴应用都呼吁广泛概述这一引人入胜的领域中正在进行的研究。这是本期特刊的目的 - 物质互动,以提供字段的概述。为此,我们在此领域收集了一系列25篇文章。本期特刊始于C Bauer和H Giessen [1]的有关上等离子晶体的线性光学特性的教程,并包括三篇评论论文和21篇原始文章。该教程之后是一篇有关基于等离子的光聚合及其在近距离传感和光化学中的应用的评论文章[2]。giugni等[3]对“绝热纳米焦焦”的基础和应用进行了有趣的综述,即,将sp polartons转化为纳米含量的sp,例如锥形金属taper虫。Peruch等人[4]的第三次审查仍在印刷中,讨论了基于金属纳米棒阵列的超快全光开关的光学特性。
有几种合金成分,包括硅,erbium,Neododmium,Gold和Bismuth。使用我们多年的专业知识,我们确保每个源以最大的稳定性流动。也可用于氢,氮,氧和其他气态元件。我们正在不断开发新来源 - 有关可用元素的最新列表,请参见我们的网站。
目前的抗肿瘤治疗方法有几个局限性,包括多药耐药性和严重的不良反应。靶向药物递送系统是可以帮助医疗服务提供者克服这些限制的有效替代方案。外泌体可以作为一种天然的纳米级药物递送系统,具有高生物相容性、低免疫原性和有效的肿瘤靶向性的优点。在本文中,我们讨论了外泌体的生物学特性,总结了基于外泌体的药物递送系统的载药机制,并研究了外泌体在临床肿瘤治疗方法中的潜在作用和适用性。本综述可作为未来基于外泌体的递送系统在临床精准肿瘤治疗中发展的指南。
《模拟电路与信号处理》丛书,前身为《Kluwer 国际工程与计算机科学丛书》,是一套高水准的学术专业丛书,出版有关模拟集成电路和信号处理电路与系统的设计和应用的研究成果。通常每年我们会出版 5-15 本研究专著、专业书籍、手册和编辑本段,分发给世界各地的工程师、研究人员、教育工作者和图书馆。该丛书促进并加快了模拟领域新研究成果和教程观点的传播。全球范围内,该领域开展着大量令人兴奋的研究活动。研究人员正努力通过改进模拟功能来弥合传统模拟工作与超大规模集成 (VLSI) 技术的最新进展之间的差距。模拟 VLSI 已被公认为未来信息处理的主要技术。模拟工作正在显示出巨大变化的迹象,重点是结合设备/电路/技术问题的跨学科研究工作。因此,新的设计概念、策略和设计工具正在被揭示。感兴趣的主题包括:模拟接口电路和系统;数据转换器;有源 RC、开关电容和连续时间集成滤波器;混合模拟/数字 VLSI;仿真和建模、混合模式仿真;模拟非线性和计算电路和信号处理;模拟神经网络/人工智能;电流模式信号处理;计算机辅助设计 (CAD) 工具;新兴技术中的模拟设计 (可扩展 CMOS、BiCMOS、GaAs、异质结和浮栅技术等);模拟测试设计;集成传感器和执行器;模拟设计自动化/基于知识的系统;模拟 VLSI 单元库;模拟产品开发;射频前端、无线通信和微波电路;模拟行为建模、模拟 HDL。