最近发现二维(2D)过渡金属碳化物和硝酸盐(MXENES)由于其独特的电气,光学和化学性质而受到了极大的关注。这些非凡的特性使它们成为各种应用,包括通过光热效应的多模式肿瘤疗法的合适候选者。在这项工作中,我们演示了如何通过应用连续的超声处理过程来减少1-5 µm大的Ti 3 C 2单层MXENE片。不同的微观技术已被用来可视化超大单层Ti 3 C 2纳米片的形成。所制备的Mxene纳米片在水和乙醇中表现出良好的溶解度。此外,使用(3-氨基丙基)三乙氧基硅烷(Aptes)和聚(3,4-乙二烯二苯乙烯)聚苯乙烯磺酸盐(PEDOT:PSS)用于MXENE纳米片的表面修饰,以打开随后的抗体生物套件的可能性。PEDOT:PSS改善了纳米片的光热转化性能,这是通过在辐射时从48.6ºC增加到58.1ºC的记录,提高了808 nm波长激光器的温度。进一步的体内和体外研究将需要优化Ti 3 C 2纳米片的光热特性。
抽象的2D过渡金属二分裂基化元素(例如具有独特分层结构的MOS 2)在锂离子电池(LIBS)领域受到了极大的关注。但是,低电导率和结构稳定性差会对LIB的速率性能产生不利影响。在此,由水稻样的MOS 2 /c组成的柔性且独立的高性能锂离子电极(MOS 2 /c@ti 3 C 2 t X)组成,设计和证明了MOS 2的较大的层套管距离,含有大米的MOS 2 /C插入式Ti 3 C 2 t x和PVP衍生的碳组成。锂离子电池由于其高能量密度引起了极大的关注。因此,作为锂离子电池的阳极材料,MOS 2 /c@ti 3 c 2 t x在0.05 a g-1时提供了538.5 mAh g-1的高排放能力,并在2 a g-1处的256.7 mAh g-g-1的快速充电 /放电能力为2 a g-g-1,以及在2 a g-1的效果(以及150 cy)150 cyect and cy and cat a and cat a and 1 150 cy。密度功能理论(DFT)计算表明,水稻样的MOS 2 /C结构有利于锂离子的吸附和扩散,并促进了氧化还原反应。MOS 2 /C@Ti 3 C 2 T X结构有望增强高性能锂离子电池的新型2D材料的开发。
[A] I. J.GómezCeitecMasaryk University Kamenice 5,625 00 Brno,捷克共和国[C] V.Sebastián博士,Aragón(INA)的纳米科学研究所J.Santamaría教授(INA)和化学与环境工程系的纳米阶级研究所,以及50018 Zaraga,Spain ebro,Spain eBro,Spain eBro,耶稣。生物材料和纳米医学(Ciber-BN)28029马德里,西班牙[A]I. J.GómezCeitecMasaryk University Kamenice 5,625 00 Brno,捷克共和国[C] V.Sebastián博士,Aragón(INA)的纳米科学研究所J.Santamaría教授(INA)和化学与环境工程系的纳米阶级研究所,以及50018 Zaraga,Spain ebro,Spain eBro,Spain eBro,耶稣。生物材料和纳米医学(Ciber-BN)28029马德里,西班牙
通过热液过程和硝化化合物合成的类似饼干的co-vn@c在锂离子电池(LIBS)中具有出色的电化学特性,并且在氧气进化反应(OER)中具有阳极材料和催化剂。具有丰富暴露活性位点的金属CO纳米颗粒在原位均匀地隔离,以便它们强烈地粘附在VN底物上,从而导致加速电荷转移并增强稳定性。复合材料的碳壳充当缓冲层,可减轻体积的膨胀,电池的稳定容量为335.5 mAh g -1后500循环后,以0.5 a g -1循环。以不同的速率进行测试后,电流密度恢复为0.1 a g -1,Co-Vn@C电极的容量返回到588.0 mAh g -1。此外,Co-Vn@C在氧气演化反应中具有出色的电化学催化活性。这项工作阐明了长期的稳定性和高速率的电极材料,用于将来的LIBS开发,该策略为电化学催化的高性能电极材料设计提供了见解。
Ni 前驱体采用一步水热法制备(如图 S1† 所示)。首先,将 0.4 g 尿素和 0.58 g NiNO3$6H2O 在 3 mL 乙醇和 37 mL 纯净水的混合物中搅拌 60 分钟。然后,将该溶液和矩形 Ni 泡沫基底转移到高压釜中,以 3 C min-1 的升温速率加热至 180 C,并在 180 C 下保温 18 小时。第三,将产物从高压釜中取出,用超声波清洗 10 分钟,以去除表面的松散产物。然后将 Ni 前驱体和 Na2S 溶液转移到高压釜中,在 120 C 下加热并保温 3 小时,从而制备出 NiS 纳米片。最后,用去离子水清洗所得样品并在 60 C 下干燥以进一步表征。 Ni泡沫上NiS的质量负载约为28mg,面积负载约为3.2cm2,计算得出单位面积质量负载为8.8mg/cm2。
用于电催化水分裂的高级材料对于可再生能源研究至关重要。在这项研究中,我们描述了一个两步反应,以制备由Pt纳米颗粒和MOS 2纳米片组成的氢进化反应(她)的电极。形态和结构的特征是多种技术,包括SEM,TEM,XRD和XPS。详细的电化学特征表明,PT纳米颗粒/MOS 2纳米片/碳纤维电极(2.03 w%pt)在其酸性电解质中表现出极好的催化活性,其超电量为5 mV(Vs.她)。估计相应的Tafel斜率为53.6 mV/dec。稳定性通过长期电势周期和扩展电解确认催化剂的特殊耐用性。â2015 Elsevier Ltd.保留所有权利。