室温钠硫 (RT Na-S) 电池具有高理论能量密度和低成本的特点,最近因潜在的大规模储能应用而受到广泛关注。然而,多硫化钠的穿梭效应仍然是导致循环稳定性差的主要挑战,这阻碍了 RT Na-S 电池的实际应用。在此,设计了一种多功能混合 MXene 中间层以稳定 RT Na-S 电池的循环性能。混合 MXene 中间层包括大尺寸的 Ti 3 C 2 T x 纳米片内层,随后是玻璃纤维 (GF) 隔膜表面的小尺寸 Mo 2 Ti 2 C 3 T x 纳米片外层。大尺寸的 Ti 3 C 2 T x 纳米片内层为可溶性多硫化物提供了有效的物理阻挡和化学限制。小尺寸的 Mo 2 Ti 2 C 3 T x 外层具有出色的多硫化物捕获能力,并加速了多硫化物转化的反应动力学,这是由于其优异的电子电导率、大的比表面积和富含 Mo 的催化表面。因此,采用这种混合 MXene 夹层改性玻璃纤维隔膜的 RT Na-S 电池在 1 C 下在 200 次循环中提供稳定的循环性能,容量保持率提高了 71%。这种独特的结构设计为开发高性能金属硫电池的基于 2D 材料的功能夹层提供了一种新颖的策略。
摘要:限制进一步研究和商业使用二维 (2D) MXene 碳化钛 (Ti 3 C 2 ) 以及一般 MXenes 的主要因素之一是新鲜制备的样品在以水悬浮液形式储存时氧化和降解的速度。在这里,我们表明,在合成 Ti 3 AlC 2 MAX 相前体期间加入过量的铝会产生具有改善的化学计量和结晶度的 Ti 3 AlC 2 颗粒。由改进的 Ti 3 AlC 2 生产的 Ti 3 C 2 纳米片质量更高,其抗氧化性增强且电导率提高至 20,000 S/cm 就是明证。我们的结果表明,在合成 Ti 3 C 2(以及推断的其他 MXenes)过程中产生的缺陷导致了先前观察到的不稳定性。我们表明,通过消除这些缺陷,可以使 Ti 3 C 2 在水溶液和空气中高度稳定。用改性 Ti 3 AlC 2 制成的单层至多层 Ti 3 C 2 薄片的水悬浮液即使在环境条件下储存,保质期也超过 10 个月,而用传统 Ti 3 AlC 2 制成的 Ti 3 C 2 的保质期仅为一到两周。用 Ti 3 C 2 悬浮液制成的独立薄膜在储存 10 个月后,电导率几乎无下降,氧化作用几乎可以忽略不计。改进的 Ti 3 C 2 在空气中的氧化开始温度比传统 Ti 3 C 2 高 100-150°C。Ti 3 C 2 的保质期和性能均有改善,这将促进这种材料的广泛使用。
在这项研究中,使用相位反转方法和浸没技术在非溶剂环境中使用磺化聚乙烯磺酮开发了纳米滤膜。聚乙烯基吡咯烷酮(PVP)用作孔形成剂,二甲基乙酰氨酰胺(DMAC)用作溶剂。这些膜的固有疏水性归因于它们的磺化聚乙烯成分,这是通过引入的氧化石墨烯纳米颗粒来缓解的。此外,将曙红单体引入氧化石墨烯,以增强氧化石墨烯纳米片的分散体。各种表征技术,包括电子显微镜,傅立叶转换红外(FT-IR)光谱,能量分散性X射线(EDX)光谱,渗透率测试,盐排斥,通量测量,接触角度分析和水含量评估,以实现修改后的MEMBRANES。电子显微镜图像示出了在表面下方的多孔空隙形成,并在改良的膜内形成了更宽的通道。ft-ir分析显示,曙红Y-GO纳米片中存在官能团(O = C-BR)。引入曙红纳米片的引入导致渗透率明显变化,盐排斥增加,尤其是硫酸钠(Na 2 So 4)。此外,纳米颗粒包含显着改善了亲水性和增强的水含量。此外,添加纳米颗粒导致孔隙度和孔径的增加。这种最佳的纳米颗粒浓度突出了研究的关键发现。最终,校正样品包括0.01 wt%的纳米颗粒表现出较高的性能,尤其是在盐通透性和硫酸钠(Na 2 So 4)中,与其他样品相比。
迫切需要有效的储能设备,对金属离子电池的研究和开发有希望的阳极材料非常关注。通过密度功能研究,我们首次成功地预测了P 3 S和C 3 S单层的电化学性能,可以在碱金属(LI,LI,NA和K)电池中使用。我们的研究研究了原始的单层能量,动力和热稳定性。原始纳米片的电子结构表现出宽间隙的半导体。单层上的单个金属化后,复合系统变为金属。电荷密度差(CDD)分析表明,电荷转移是从碱金属原子到P 3 S和C 3 S单层的,而Bader电荷分析量化了电荷转移量。我们已经分析了2D结构中单个Adatom扩散的容易分散。一个例子是k上k的扩散,c 3 s的较低屏障值为0.06 eV,并且似乎无障碍物。此外,我们预测的复合系统报告了相当大的理论存储能力(C);例如,六边形K adsorbed C 3 s显示存储容量为1182.79 mA h g -1。估计的开路电压(OCV)值表明C 3 S单层有望用于LI-,Na-和K-ION电池的阳极材料,而P 3 S单层单层适合作为LI-,Na-和K-ion电池的阴极材料。
抽象的灰泥古迹非常容易受到损害,其合并需要评估新的和先进的材料。纳米复合材料应用于许多历史材料(如石材和壁画绘画)时,已显示出高度有希望的合并结果。当前的实验研究评估了添加到石墨氮化碳(G-C 3 N 4)中的生物活性玻璃纳米颗粒(BG NP)的有效性,并与丙酮中的寄生虫(B-72)混合。在此,分别通过溶胶 - 凝胶和热分解化学途径制备了生物活性玻璃纳米颗粒和氮化石纳米片。已经使用透射电子显微镜(TEM),X射线衍射(XRD)和傅立叶变换红外(FT-IR)研究了所制备的纳米植物的理化特性。此外,使用动态光散射技术研究了胶体性能。评估协议概述了一个六步过程,以评估经过人工老化程序后与纳米复合材料合并的标准样品的适用性。该研究涉及通过使用数字显微镜和SEM暴露于各种条件后的合并样品的变化,以识别合并后的灰泥样品的外观,并在应用所选的纳米复合材料和人造老化程序后。使用比色表来测量颜色变化,并在老化之前和之后进行样品进行比较。物理和机械性能,并测量接触角以确定疏水性或亲水性。获得的结果表明,生物活性玻璃/G-C 3 N 4杂交纳米复合材料的组成为Bg 0.5%,G-C 3 N 4 1%和B-72 3%在苏顿糖样品的拟议混合物中获得了最佳的固结结果。关键字:灰泥,混合,调查,颜色变化,接触角,SEM,XRD。
摘要 金属卤化物钙钛矿基纳米结构、纳米片和纳米颗粒处于最前沿,具有吸引人的光电特性,适用于光伏和发光应用。因此,全面了解这些基本的电子和光学特性是充分利用此类半导体技术的关键一步。迅速发展的化学工程及其不同寻常的结构多样性令人着迷,但对于与传统半导体相媲美的合理描述也具有挑战性。从这个意义上说,基于群论的对称性分析提供了一种通用而严格的方法来理解各种块体钙钛矿和钙钛矿基纳米结构的性质。在本文中,我们使用群论中的对称性分析回顾了金属卤化物钙钛矿半导体的电子和光学响应,回顾了 AMX 3 块体钙钛矿的典型立方 Pm-3m 晶格的主要结果(其中 A 为阳离子,M 为金属,X 为卤化物),然后将分析扩展到三种技术感兴趣的情况:AMX 3 纳米粒子、A 4 MX 6 孤立八面体、A 2 MX 4 层状系统和最近引入的缺陷卤化物钙钛矿 (d-HP)。基于对称性论证,我们将强调这些材料的电子和光学特性的相似性和差异性,这是由空间限制和维数引起的。同时,我们将利用这种分析来讨论文献中的最新结果和争论,如钙钛矿纳米粒子和纳米片的带边激子精细结构中暗/亮态的能量学。从目前的工作中,我们还预测 d-HP 的带边激子精细结构不会呈现光学暗状态,与 AMX 3 纳米粒子和层状钙钛矿形成鲜明对比,这一事实可能对这些新型钙钛矿的光物理产生重要影响。
传统的制备方法通常采用多步组装不同活性填料含量的复合材料切片18,20或耗时的超临界二氧化碳技术19。与多层结构相比,连续变化活性填料含量可以更有效地降低反射,从而实现连续变化的阻抗。据我们所知,基于石墨烯含量连续变化的石墨烯复合材料的电磁吸波材料尚未见报道。本文提出了一种高效的电化学方法来制备石墨烯含量连续变化的还原氧化石墨烯/聚氨酯(rGO / PU)复合泡沫。该方法利用GO纳米颗粒的尺寸与其在电场中的迁移速度之间的负相关性。通过控制电泳时间来优化分布,梯度石墨烯复合材料表现出明显的电磁波各向异性反射。此外,当电磁波入射到石墨烯含量较低的表面时,整个 X 波段的反射率较低(< 30 dB),吸收率较高(> 99.5%)。 氧化石墨烯/聚氨酯 (GO/PU) 复合泡沫的制备电泳过程如方案 1 所示,设备的光学图像如图 S1 所示。将填充有氧化石墨烯溶液的 PU 泡沫放置在两个石墨电极之间,并在电极上施加 30 V 的直流电压一段时间。对于 GO 片上羧酸和酚羟基的电离,24 带负电的 GO 纳米片在外部电场下迁移到阳极。根据胶体理论,GO 的迁移速度 v 可以通过施加的电场 E
性能。在过去的十年中,已经对含有用于耐腐蚀性的复合涂料的基于功能化石墨烯的纳米片(GNP)进行了几项实验研究。其中一些提供了腐蚀抗性的改善,而其他一些则没有成功。例如,Krishnamoorthy等人[1]通过将石墨烯氧化物片掺入醇酸树脂中,制备了油漆复合材料。在类似于海水的侵略性氯化物环境中,通过数量级改善了镀锌铁的耐腐蚀性。Chang等[2]报道了聚苯胺(PANI)/石墨烯复合涂料,以提高钢在海水中的耐腐蚀性,最高数量级。电阻随复合材料中石墨烯基材料的含量而增加。但是,有必要适当地将本研究中使用的石墨烯纳米材料功能化。将GNP掺入聚合物矩阵后,由于聚合物涂层而导致的腐蚀性进一步改善的机制在于GNP在通过涂层渗透的同时为腐蚀性物种创造曲折路径的能力。实际上。在含聚苯胺/含有粘土的复合材料表(PACC)的情况下,一种类似的机制也是如此。然而,已经证明了带有GNP的复合涂料可以优于聚苯胺/粘土片(PACC)的复合材料,因为前者为腐蚀性物种提供了更曲折的路径,如通透性数据所证明的那样。另一项研究[3]还支持了由于基于石墨烯的材料的板/去角质而引起的曲折路径机制。已经对含有GNP的复合材料进行了进一步的研究(例如,石墨烯纳米片[4],氧化石墨烯(GO)[5],还原氧化石墨烯(RGO)[6])。但是,这些系统并未作为令人印象深刻的耐腐蚀性产生。为了理解这种变异性的原因并减轻它们的原因,建议在合成中利用机器学习(ML)可用的现代工具,以及其对复合涂料的降解。
摘要MOSI 2 N 4和WSI 2 N 4的二维(2D)分层晶体的最新增长引起了人们对其出色的特性和潜在应用的重大兴趣。这一发展为新的和大型的2D材料铺平了道路,其一般公式为MA 2 Z 4。在这方面,由这个令人兴奋的家族驱动的,我们提出了M si 2 N 4(M = GE,SN和PB)单层的两个结构阶段(1T - 和1H-),并通过使用第一个Principles方法研究了它们的结构,振动,机械,电子和光学特性。这两个阶段具有相似的凝聚力,而1T结构在能量上比其1H对应物更有利。对声子光谱和从头算分子动力学模拟的分析表明,除1H -GESI 2 N 4外,所有建议的单层即使在高温下也是动态稳定的。通过计算其弹性常数(C IJ),平面刚度(Y 2D),泊松比(ν)和最终的拉伸应变(UTS)来检查所提出晶体的弹性稳定性和机械性能。值得注意的是,所考虑的系统表现出突出的机械特征,例如实质的内部刚度和高UTS。计算出的电子带结构表明,1T - 和1H-M SI 2 N 4纳米片是宽频段间隙的半导体,其能带间隙从可见光到光谱的紫外线范围跨度,适用于高强度的纳米电源设备的应用。最后,对光学性质的分析表明,设计的系统具有各向同性光谱,并且取决于系统的类型,紫外线的鲁棒吸收和可见光(尤其是在1H -PBSI 2 N 4 4 Monolayer中)。我们的研究不仅向2D MA 2 Z 4晶体的家族介绍了新成员,而且还揭示了他们有趣的物理特性,并建议他们作为多种纳米力学和光电应用的有前途的候选人。
发现石墨烯对2D材料引起了极大的兴趣,该材料呈现出具有高各向异性和可调节能带结构的超薄分层结构。有趣的是,它为开发2D材料家族的开发打开了大门,其中包括不同类别的2D材料。在其中,出现了过渡金属二甲化合物(TMD)和过渡金属碳化物MXENES(TMC)。tmds具有独特的分层结构,低成本,由地球丰富的元素组成,但是它们的电子电导率差,循环性较差,其在电化学测量过程中的结构和形态变化阻碍了其实际使用。最近,TMC MXENES在2D材料世界中引起了人们的关注,但是重新打包和聚合的问题限制了它们在大规模的能量转换和存储中的直接使用。为了应对这些挑战,基于导电TMCS MXENES和电化学活性TMD的杂种结构已成为有前途的解决方案。但是,了解异质结构材料中的固体/实心界面仍然是一个挑战。为了解决这个问题,高容量,低扩散屏障和良好的电子结构率的2D单个成分晶体非常寻求。过渡金属碳 - chalcogenides(TMCC)的出现提供了潜在的解决方案,因为这些2D纳米片由TM 2 x 2 C组成,其中TM代表过渡金属,X是S或SE和C原子。这种新的2D材料类是一种补救措施,避免了与异质结构中经常遇到的固体/实心接口相关的挑战。本综述着重于TMCC的最新发展,包括它们的合成策略,表面/接口工程以及电池,水分拆分和其他电催化过程中的潜在应用。还讨论了TMCC设计对电化学能量转换和存储的挑战和未来观点。
