Akshay Mehta,Alkesh Yadav,Aman Kumar,Kanika和Manish doi:https://doi.org/10.33545/26174693.2024.v8.i1i.i1i.481摘要纳米型,高级纳米型的造型,并具有较高的造型,并具有较高的构造。 管理。纳米颗粒由于其独特的特性,在作物改善和保护方面提供了创新的解决方案。纳米材料(例如纳米肥料)提高了养分的吸收效率,降低了环境影响并优化了资源利用。同样,纳米药物在害虫和疾病管理中表现出增加的功效,从而减少了对常规化学处理的需求。纳米技术在植物生长调节中也起着关键作用。纳米级输送系统可以控制生长调节器的控制释放,从而促进了植物发育和开花的精确调节。这种目标方法可以提高作物的产量和质量,同时最大程度地减少环境影响。此外,纳米传感器为对环境参数的实时监控做出了贡献,为精确农业提供了宝贵的见解。基于纳米材料的传感器检测土壤水分,养分水平和植物健康的变化,从而及时进行干预以进行最佳的作物管理。尽管有希望的应用,但纳米技术在园艺中的整合仍面临与环境影响,道德考虑和监管框架有关的挑战。解决这些问题对于确保农业中纳米技术的负责任和可持续部署至关重要。纳米技术在园艺中的作用是动态的和广泛的。从增强营养管理到革命性的害虫控制和生长调节,纳米技术具有巨大的潜力,可以推进园艺系统的可持续和有效实践。然而,考虑道德,环境和监管方面,平衡方法至关重要,以利用全部利益,同时减轻园艺中与纳米技术相关的潜在风险。本评论的重点是纳米技术在园艺中的作用。关键词:纳米技术,纳米颗粒,功效,纳米传感器引言全球人口正在稳步增加,在满足全球对当前和未来对食品的需求方面构成了重大挑战。为了应对这一挑战,迫切需要增加农作物的产量,估计表明增加了70%。虽然传统的肥料在支持农民方面发挥了作用,但发现其密集使用会对土壤质量产生不利影响,并对人类健康和环境构成风险。农业部门的发展取决于提高资源效率并明智地采用现代技术。纳米技术是增强农业可持续性,尤其是发展中国家的有前途的途径。纳米结构配方采用有针对性的递送,缓慢/受控的释放和有条件的释放机制,响应生物学需求并可能改变农业系统。nanoferizers,例如Zn,Cu和Fe,解决土壤固定的挑战并优化光合效率。肥料的纳米大小可增强纳米级植物毛孔的养分利用率,从而提高了营养利用效率。纳米颗粒有助于更快的种子发芽,农业产量升高和叶绿素含量改善,从而通过有效吸收来促进植物的生长(Hayat等,2023)[14]。在纳米肥料中发现了纳米技术的显着应用,从而增强了植物的营养吸收能力。研究表明,纳米肥料的使用可提高养分利用效率,减轻土壤毒性,减少过量药物的不良反应,并降低所需治疗的频率(Ditta,2012)[9]。在追求可持续农业时,纳米技术具有巨大的潜力,提供了创新的解决方案来解决粮食生产和环境影响的复杂性(Shilpa等,2022)[34]。
纳米结构在过去四十年中的线性和二维到三维纳米版本不等。8这些纳米结构包括分支的DNA基序,12,20瓦组件,8,21 - 23个折纸结构,24 - 27纳米范围28和动态纳米结构。29,30 DNA纳米技术已成为一种有前途的技术,其优势比传统材料(包括高存储密度,潜在的低能量需求和长期稳定性)具有多种优势。the lyd已经在结构生物学,生物物理学和药物生物学中解决了解决基本科学问题的应用。4这些应用包括组织工程,4,31 - 34个免疫工程,35,36药物输送,37 - 45疾病诊断4,46,47和分子生物学工具或生物传感器。45,47,48 DNA结构与其他生物聚合物和纳米纳米材料相比具有独特的特性。基于DNA的纳米材料的结构允许iveistions cessigity,因为可以将每条线串联或与伸展的臂连接。DNA框架的组装为药物分子提供了一个空心的内部空间,从而实现了有效的药物递送。DNA纳米颗粒具有负电荷,可以通过静电吸引力整合带正电的物质。它们可以用作建筑材料的构建块和治疗剂,例如在自组装的球形核酸中表现出高细胞摄取并执行基因敲低。49
在十九世纪和20世纪,当物理学家开始研究光的光学特性时,玻璃制造商的知识就被使用了。物理学家可以使用彩色玻璃来滤除所选的光波长。为了优化实验,他们开始自己生产玻璃,从而导致了重要的见解。他们了解到的一件事是,一种物质可能会导致颜色完全不同的玻璃。例如,硒化镉和硫化镉的混合物可以使玻璃变成黄色或红色 - 它取决于熔融玻璃的加热以及如何冷却。最终,他们还能够证明颜色来自玻璃内形成的颗粒,颜色取决于颗粒的大小。
哥伦比亚大学 - 塞德·麦德林(SedeMedellín),院学院(Acciultad de Minas),Grupo deInvestivaciónenfenómenosde corlactifie - Michael Polanyi摘要今天,全球石油行业今天被称为进行碳中性作品,以减少当前CO 2排放。然而,不同的技术经济局限性阻止了具有较高发育水平(TRL)的碳捕获,使用和存储(CCUS)技术的进展,允许其在实际条件下进行扩展。因此,纳米技术在近年来在增强不同CCUS过程中发挥了重要作用。本文档介绍了纳米技术在脱碳化石油工业中的作用的看法,强调了与水泥行业,智能碳储存,增强的恢复(EOR)过程(EOR)流程(EOR)过程以及对CO 2和/或气流提高生产率的可能协同作用。关键字:纳米技术;石油和天然气; eor/ior;地层损坏; ccus。
微生物纳米技术,即微生物驱动的纳米生物技术,是微生物技术领域的一个新兴领域,它利用了生物技术过程。微生物的生物勘探可以生产大量不同的纳米级材料,例如有机纳米材料、金属及其氧化物纳米材料等。(Verma 等人,2022 年)。与化学、物理和物理化学方法等替代合成途径相比,微生物纳米工厂路线采用绿色简便的方法来生产生物纳米材料。微生物纳米材料具有功能化的生物活性基团,可在纳米级上提高稳定性和功能性。这些微生物纳米产品主要用作坚固的载体,用于完整地递送/利用生物活性成分,以用于从农业食品到制药行业的定制应用(Chamundeeswari 等人,2019 年)。微生物纳米材料已被用于净化环境有毒物质,通过生物催化将工业废水中产生的有害污染物降解为无害的副产品 ( Verma, 2017 ; Verma et al., 2020 )。因此,微生物纳米生物技术具有广泛的应用范围,构成了微生物纳米制造中一种经济高效的方法,并可能在不久的将来为社会带来巨大的利润。随着绿色纳米技术的出现,重金属和致病菌对可持续水产养殖业的影响可以降到最低。在这方面,Saad 等人利用枯草芽孢杆菌 AS12 开发了一种生产 77 纳米大小的硒纳米颗粒的有效方法。通过细菌介导的硒纳米粒子生物合成,富含功能性生物活性成分(即黄酮类化合物和次生代谢物)的细菌悬浮液提供了纳米粒子在形状和大小方面的稳定性。这些纳米粒子针对尼罗罗非鱼(Oreochromis niloticus)中两种重金属(Cd 和 Hg)的积累和致病细菌嗜水气单胞菌负荷进行了测试。进一步的作者建议,生物源硒纳米粒子可能非常适合用于污染水,以最大限度地减少致病微生物和重金属的副作用;从而提高水产养殖业的生产力。
纳米技术已成为药物输送领域的变革者,为治疗剂的给药提供了精确而有针对性的方法。本文从化学工程的角度探讨了纳米技术的最新进展。它深入探讨了推动药物输送纳米载体设计的原理和方法,展示了显著的创新,并讨论了这些进步对医疗保健的潜在影响。关键词:纳米技术、药物输送、化学工程、纳米载体、靶向治疗、医疗保健。
肝细胞癌(HCC)是全球肿瘤相关死亡的主要原因之一。HCC的常规治疗方法包括药物,辐射和手术。尽管研究人员的努力不懈,但HCC的治愈作用得到了极大的改善,但是由于HCC经常在中间和晚期发现,因此治愈效应仍然不满意,并且5年的生存率仍然很低。纳米医学是一个潜在的受试者,已应用于HCC的治疗,并取得了有希望的结果。在这里,我们总结了影响HCC治疗中药物有效性的因素以及改善HCC中基于纳米技术药物的效率的策略,回顾了HCC治疗中基于Nanotechnology的药物的最新应用,并讨论了基于Nanotechnology Dress的HANOTECHNOLOGY DRESSION和HANOTECHNOLOGY DROVESS HANOTECHNOLOGY PRESSICS HANOTECHNOLOGY药物的进展。
参考文献:1) Ceze, L., Nivala, J. & Strauss, K. 使用 DNA 进行分子数字数据存储。Nat Rev Genet 20, 456–466 (2019)。https://doi.org/10.1038/s41576-019-0125-3 2)Ranjbar R, Hafezi-Moghadam MS。基于 MPT64 抗体适体的 DNA 折纸药物输送系统的设计和构建,用于治疗结核病。Electron Physician。2016 年 2 月 25 日;8(2):1857-64。doi:10.19082/1857。PMID:27053991;PMCID:PMC4821297。 3)光学纳米天线:作为生物传感器的最新技术、应用范围和挑战以及人类对纳米毒理学的暴露” Sensors 15, no. 4: 8787-8831. 4) Kearney CJ, Lucas CR, O'Brien FJ, Castro CE. DNA Origami:可引导和解释细胞行为的折叠 DNA 纳米装置. Adv Mater. 2016 年 7 月;28(27):5509-24. doi: 10.1002/adma.201504733. Epub 2016 年 2 月 3 日. PMID: 26840503; PMCID: PMC4945425. 5) Pinheiro AV, Han D, Shih WM, Yan H. 结构 DNA 纳米技术的挑战和机遇. Nat Nanotechnol. 6) Endo M, Sugiyama H. DNA 折纸纳米机器。分子。2018 年 7 月 18 日;23(7):1766。doi: 10.3390/molecules23071766。PMID: 30022011;PMCID: PMC6099981。(7) Hernandez-Garcia A. 构建混合蛋白质-DNA 纳米结构的策略。纳米材料。2021;11(5):1332。https://doi.org/10.3390/nano11051332
纳米技术已成为 21 世纪的颠覆性创新之一,具有解决许多领域问题以实现可持续发展目标 (SDG) 的巨大潜力。自 20 世纪初以来,纳米技术在许多领域发展迅速,包括健康(例如药物输送系统、纳米药物、疫苗配方和即时诊断)、农业(例如纳米肥料)、清洁饮用水(例如处理和净化)、清洁能源技术、减少二氧化碳排放等。本政策简报展示了纳米技术在科学、技术和创新 (STI) 中的力量,以实现发展中国家(重点是南非)的可持续发展目标。它还将讨论纳米技术在几个关键领域的影响和挑战,并提出一些政策建议。