从2017年获得的ISO证书确认了OCSIAL质量控制,环境,健康和安全管理系统所需的高水平。 目前,OCSIAL已根据ISO 9001,ISO 14001,ISO 45001:2018和BS OHSAS 18001进行认证。 在2019 - 2020年,OCSIAL生产设施成功通过了遵守德国汽车行业标准VDA 6.3的审核。从2017年获得的ISO证书确认了OCSIAL质量控制,环境,健康和安全管理系统所需的高水平。目前,OCSIAL已根据ISO 9001,ISO 14001,ISO 45001:2018和BS OHSAS 18001进行认证。在2019 - 2020年,OCSIAL生产设施成功通过了遵守德国汽车行业标准VDA 6.3的审核。
摘要 为了设计用于治疗和诊断应用的药物输送剂,了解共价功能化碳纳米管穿透细胞膜和与细胞膜相互作用的机制非常重要。在这里,我们报告了聚苯乙烯和羧基封端聚苯乙烯改性碳纳米管的全原子分子动力学结果,并展示了它们在模型脂质双层中的易位行为以及它们将布洛芬药物分子输送到细胞中的潜力。我们的结果表明,功能化碳纳米管在数百纳秒内被膜内化,并且药物负载进一步提高了内化速度。负载和未负载的管都通过非内吞途径穿过双层的最近小叶,在研究的时间内,药物分子仍然被困在原始管内,同时仍然附着在聚苯乙烯改性管的末端。另一方面,羧基封端的聚苯乙烯功能化可使药物完全释放到双层膜的下层,而不会对膜造成损坏。这项研究表明,聚苯乙烯功能化是一种有前途的替代方案,并作为基准案例促进了药物输送。
抽象的隧穿纳米管(TNT),连接的细胞之间的开放膜通道代表了一种新型的直接通信方式,以扩散各种细胞材料,包括生存信号或死亡信号,遗传材料,细胞器和病原体。他们的发现促使我们回顾了我们对涉及细胞通讯的许多生理和病理过程的理解,但也使我们能够在远处发现新的交流机制。虽然这已经丰富了田地,但它也引起了一些混乱,因为已经描述了不同的TNT样突起,尚不清楚它们是否具有相同的结构 - 功能。大多数研究都是基于低分辨率成像方法的,主要问题之一是不一致地证明了这些各种连接与转移属于不同种群之间的材料之间的概念。此简短审查研究了TNT的基本属性。在成年组织中,TNT被不同的疾病,应力和燃料信号刺激。“另外”,基于突触刺和TNT伪造的发展过程的相似性,我们认为大脑中的TNT早于突触传播,在未成熟神经元电路的编排中发挥了作用。
近年来,微/纳米级材料结构的合理设计引起了人们的极大兴趣,因为它们可以改变材料的物理性质。例如,垂直排列的纳米线(NW)可以调节表面的光学性质,因为它们的几何形状(直径、高度、间距)可以调整光的约束和吸收。因此,光伏应用对光收集能力的提高有着很大的需求。1碳纳米管(CNT)阵列可以构建高密度的3D集成电路架构。不同功能层(如传感、存储、处理)2之间的连接性空前增强,这非常适合用于物联网(IoT)等数据密集型技术。对于上述所有实现以及其他实现,在处理密集排列的1D纳米结构阵列时保持垂直方向是至关重要的。然而,不同的制造步骤可能会偏离这一期望方向。据报道,例如,在通过扫描电子显微镜进行表征时,暴露于电子束会使半导体纳米线弯曲,随后形成纳米线束。3 – 6 涉及湿法蚀刻或清洗的程序也会导致纳米线 7 – 9 和碳纳米管的垂直排列重新成形。在所有这些情况下,都会发生干燥步骤,其中相邻纳米柱之间的毛细管弯月面会产生横向力,可能使它们接触 10,11 并最终组装在一起。
自1985年发现有机C 60富勒烯和1991年的碳纳米管[2]以来,已经发表了许多科学论文,将其物理和化学性质描述为新碳材料[3-6]。引起研究人员极大兴趣的主要特征是富勒烯是一种分子形式[1],碳纳米管被认为是结合分子和固体特性的分子间物质[7]。近年来,对纳米结构的碳材料的需求不断增长,用于微电源[8-9],生物医学[10-11],太阳能[12-14],Photonics [15-16]和纳米工程[17-18]在整体物理学的研究中恢复了整体的研究,从(C 60,C 70)在各种有机和无机溶剂中。The most interesting varieties of supramolecular nanoarchitectures less than 1000 nm in diameter based on fullerenes are nanorods [19–20], nanowires [21–22], nanowhiskers (NWs) [23–24], nanotubes [25–26], and nanosheets [27–28].当前,已经开发了几种方法来获得此类富勒烯纳米结构,特别是蒸发饱和溶液的方法[29-30],模板方法
工业或个人用途会增加环境污染(例如水污染或二氧化碳产生)并且还会导致不利的健康影响(例如刺激、过敏反应或溶血问题)。 [6] 因此,必须找到一种环保且可持续的替代方案。Pickering 乳液以首次报道它们的科学家的名字命名,其特点是存在提供稳定性的界面活性粒子。 [7] 在油包水或水包油乳液的情况下,这些 Pickering 稳定剂会吸附在油/水界面上并发挥作用。 [8] 特别是,与传统的表面活性剂稳定体系不同,高胶体稳定性不是来自表面张力的降低,而是来自界面上物理屏障的形成。 [9] 纳米粒子的不可逆锚定可以通过考虑从两种不混溶液体界面解吸所需的高能量来解释。 [10] 因此,产生了强大的空间屏障,乳液具有很强的抗聚结、抗变形和抗奥斯特瓦尔德熟化能力,可以长时间有效地保护液滴。 [6]