1人工结构和量子控制的主要实验室(教育部),Shenyang国家材料科学实验室,物理与天文学学院,上海Jiao Tong University,Shanghai 200240,中国2 Shanghai 200240, China 4 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China 5 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China 6 Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany 7 Beijing National Laboratory for Condensed Matter中国科学院物理和物理研究所,中国北京100190,中国8物理科学学院,中国科学院,北京100190,中国
有机染料在人们的生活中随处可见。尽管有机染料在我们的生活中无处不在,但它们在生理条件下本质上是光降解和反应性的。[1] 自十九世纪以来,人们就已发现[2] 染料的不稳定性部分源于激发态寿命期间发生的不同光激活物理和化学过程,其中包括通过系统间窜越形成暗态、[3,4] 分子构象变化、[5] 以及由于明暗态之间随机偏移而引起的光诱导充电和触发暂时性扰动(闪烁)。[6–8] 更重要的是,与染料接触的活性氧化物 (ROS) 会诱导不可逆的光致发光 (PL) 消光,称为光漂白或褪色。[9,10] 这些过程大大减少了进行实验的时间窗口,从而限制了生物成像应用和各种条件下的体内监测。例如,绿色荧光蛋白 (GFP) 在光漂白之前提供有限数量的吸收/发射循环,发射光子数在 10 4 到 10 5 之间。尽管如此,GFP 仍然非常受欢迎,作为荧光探针,尽管它们的使用在典型的成像条件下仅限于几分钟。[11,12]
单壁碳纳米管于 1991 年被“正式”发现,但有传闻表明这些结构的出现可能早于正式发现近 40 年。纳米管是纳米尺寸的管状结构。碳纳米管 (CNT) 之所以具有吸引力,是因为它们兼具机械强度、高热导率和可调节的电气性能。这些特性使该技术适用于从混凝土和复合材料到电池存储、汽车、电子、医疗和国防市场等各种应用。纳米技术的性能优势广为人知,但成本和可用性问题阻碍了其广泛采用。CHASM Advanced Materials 希望改变这种模式。CHASM Advanced Materials 的故事始于 Chasm Technologies,这是一家由 Dave Arthur 和 Bob Praino 于 2005 年创立的咨询公司。在共同创办 Chasm Technologies 后不久,Dave Arthur 离开公司,担任 SouthWest NanoTechnologies (SWeNT) 的首席执行官,SWeNT 是 Chasm 的首批客户之一。 SWeNT 成为电子和复合材料应用领域碳纳米管材料的领先生产商,并于 2009 年与 Chasm Technologies 正式建立战略联盟。2015 年,Chasm Technologies 同意收购 SWeNT,Dave Arthur 成为新成立的 CHASM Advanced Materials 的首席执行官。CHASM 的总部和应用开发中心位于马萨诸塞州坎顿一座占地 10,000 平方英尺的工厂内。碳纳米管面临的挑战之一是规模。收购 SWeNT 后,SWeNT 在俄克拉荷马州诺曼拥有一座占地 18,000 平方英尺的先进制造工厂,该工厂经过特殊设计和配置,可生产高纯度碳纳米管。作为 CHASM 增长和创新战略的一部分,该工厂正在实施世界上最大的 CNT 生产平台,年生产能力为 1500 公吨。 CHASM 称该平台是大规模生产高质量 CNT 添加剂最具可扩展性、成本效益和可持续性的方法。这一努力
为了利用无机纳米管用于务实目的,其机械性能的表征成为一个相关问题。在本研究中,通过使用Stillinger-weber-weber类型的原子间潜能来获得几个直径WS 2纳米管和两个主要晶格方向的机械性能的一系列结果。根据实验结果获得了接近170 GPA的纳米管的年轻模量,而T多型的纳米管的130 GPa获得了,几乎不依赖于纳米管的直径。拉伸强度大至20 GPa(h扶手椅纳米管,接近实验中获得的值),而破裂点的应变达到接近0.24的值。研究了几种缺陷对机械性能的影响,结果表明,当缺陷在没有整个WS 2单位的情况下组成时,拉伸强度和破裂点会大大下降,并且裂缝变得比原始纳米管更脆。还研究了机械性能对温度的依赖性。
Nozzle temperature ( o C) 210 and 240 230 and 260 210 and 220 Bed temperature ( o C) 60 75 90 Infill density (%) 100 100 100 Infill pattern Line (0/90) Line (0/90) Line (0/90) Layer width (mm) 0.35 0.35 0.35 Layer height (mm) 0.2 and 0.3 0.2 and 0.3 0.2 and 0.3 Printing speed (mm/sec) 15 15 15
[36] M. S. Romano等人,纳米科学和纳米技术杂志,(可在:https://pubmed.ncbi.nlm.nih.gov/26328301/上获得:
* 金波庞,jinbo.pang@hotmail.com;ifc_pangjb@ujn.edu.cn;Gianaurelio Cuniberti,gianaurelio.cuniberti@tu-dresden.de 1 山东省高校先进交叉学科研究院(iAIR)生物诊断与治疗技术与装备协同创新中心,济南大学,山东省济南市 250022,中国 2 PORT 波兰技术发展中心,Łukasiewicz 研究网络,Ul。 Stabłowicka 147, 54‑066 弗罗茨瓦夫,波兰 3 波兰科学院聚合物与碳材料中心,M. Curie ‐ Sklodowskiej 34, 41‑819 扎布热,波兰 4 南方科技大学化学系,深圳 518055,中国 5 山东大学晶体材料国家重点实验室,生物与微纳米功能材料研究中心,济南市山大南路 27 号,250100,中国 6 苏州大学能源学院,能源与材料创新研究院,苏州,苏州 215006,中国 7 苏州大学江苏省先进碳材料与可穿戴能源技术重点实验室,苏州 215006,中国 8 波兰科学院聚合物与碳材料中心,M. Curie Sklodowskiej 34, 41‑819 扎布热,波兰 9 复合材料研究所,莱布尼茨固体与材料研究所(IFW Dresden),20 Helmholtz Strasse,01069 Dresden,德国 10 环境技术研究所,VŠB-Ostrava 工业大学,17. Listopadu 15,Ostrava 708 33,捷克共和国 11 材料科学研究所和 Max Bergmann 生物材料中心,德累斯顿先进电子中心,德累斯顿工业大学,01069 Dresden,德国 12 德累斯顿计算材料科学中心,德累斯顿智能材料中心(GCL DCIM),德累斯顿工业大学,01062 Dresden,德国
elvysreis@yahoo.com.br 摘要 将碳纳米管 (CNT) 添加到胶凝基体中,更具体地说添加到混凝土中,可以提高其强度和耐久性。从这个角度来看,本文旨在回顾含碳纳米管混凝土 (CNT 混凝土) 的主要工程性能。为此,我们使用 ProKnow-C 方法查找过去五年中发表的最相关论文,并选择了 19 篇文章进行完整分析。收集的数据包括 CNT 的类型、含量和分散技术,以及 CNT 混凝土的类型和性能,即抗压强度、抗拉强度和抗弯强度、弹性模量、吸水率、孔隙率和渗透性、电导率和电阻率、碳化和氯离子渗透阻力、断裂能和韧性。这篇系统的文献综述表明,添加 CNT 通常会提高混凝土强度,但其对其他工程性能(如碳化和氯离子渗透阻力、蠕变和收缩)的影响仍需要进一步研究。 关键词:水泥基材料;碳纳米管;力学性能;耐久性。1. 引言混凝土是世界上消耗最多的建筑材料,也是污染最严重的材料,其生产约占全球二氧化碳排放量的 7% [1]。由于其多种使用方式,数以百万计的钢筋混凝土 (RC) 结构每天都面临着恶劣的天气条件、污染和其他化学侵蚀,这些侵蚀会渗透并损坏其钢筋。然而,修复这些损坏的成本可能很高,正如美国土木工程师学会 (ASCE) 年鉴中所述 [2]。从这个意义上说,一些 RC 结构不断出现一系列耐久性问题,主要与腐蚀、潮湿、氯离子侵蚀、硫酸盐和碱金属有关。
摘要:热电(TE)技术提供了一种直接收获和转换从人体连续释放的热量的新方法。对可穿戴te发电机应用的TE材料的最大挑战与人体不断变化的形态兼容,同时又具有连续稳定的功率输出。在这里,通过改进的湿式旋转方法制备了可拉伸的羧基单壁碳纳米管(SWNT)的TEFER。即使在约30%的拉伸应力下,基于退火的羧基SWNT的稳定sebeck系数也是44μv/k。实验结果表明,当将其更改为各种形状时,文件可能会继续产生恒定的TE电位。与基于Seebeck效应的现有TE纤维相比,新的可拉伸性Tefer具有更大的塞贝克系数,并且具有更大的可拉伸性,这为将技术用于各种实用应用开放了一条途径。关键字:碳纳米管,热电材料,seebeck效果,可拉伸纤维