摘要:以原始形式和含有碳纳米管(CNT)或Fe 2 O 3纳米颗粒(NP)(NPS)的超高分子量聚乙烯(UHMWPE)的薄薄片。CNT和Fe 2 O 3 NP的重量百分比在0.01%至1%之间。通过传输和扫描电子显微镜以及通过能量分散X射线光谱分析(EDS)来确认UHMWPE中CNT和Fe 2 O 3 NP的存在。使用衰减的总反应傅立叶转化红外(ATR-FTIR)光谱和UV-VIS吸收光谱光谱光谱光谱光谱法研究了嵌入式纳米结构对UHMWPE样品的影响。ATR-FTIR光谱显示了UHMWPE,CNTS和Fe 2 O 3的特征。关于光学性能,无论嵌入纳米结构的类型如何,都观察到光吸收的增加。从光吸收光谱中确定允许的直接光能差距值:在这两种情况下,它都随着CNT或Fe 2 O 3 NP浓度的增加而降低。将提出和讨论获得的结果。
时期激活,14光催化15和Fenton 16技术。在上述治疗系统中,用塑料废物制备的碳质材料的利用可以降低治疗成本并促进这些技术的全尺度。在这项研究中,将矿泉水塑料瓶,塑料饮水杯和塑料酸奶杯子用作制备富含碳的材料(例如石墨烯,碳球形和碳纳米管)的前体。使用能量分散X-射线光谱,X射线差异,傅立叶变换红外光谱和透射电子显微镜,研究了制备材料的化学组成,化学结构,官能团和形态。此外,通过X射线光电子体镜检查和热重分析研究了制备材料的化学状态和热稳定性。此外,使用BET表面积分析仪估算合成材料的表面积。
时期激活,14光催化15和Fenton 16技术。在上述治疗系统中,用塑料废物制备的碳质材料的利用可以降低治疗成本并促进这些技术的全尺度。在这项研究中,将矿泉水塑料瓶,塑料饮水杯和塑料酸奶杯子用作制备富含碳的材料(例如石墨烯,碳球形和碳纳米管)的前体。使用能量分散X-射线光谱,X射线差异,傅立叶变换红外光谱和透射电子显微镜,研究了制备材料的化学组成,化学结构,官能团和形态。此外,通过X射线光电子体镜检查和热重分析研究了制备材料的化学状态和热稳定性。此外,使用BET表面积分析仪估算合成材料的表面积。
1 圣何塞州立大学信息系统与技术学院,美国加利福尼亚州圣何塞 95192 2 韩国科学技术院管理信息系统系,韩国大田 34141 3 伊尔迪兹技术大学电子与通信工程系,土耳其伊斯坦布尔 34349 4 明尼苏达大学医学院血液学、肿瘤学和移植医学系,美国明尼苏达州明尼阿波利斯 55455 5 斯坦福大学医学院神经病学和神经科学系,美国加利福尼亚州斯坦福 94305 6 斯坦福大学医学院精准健康和综合诊断中心,美国加利福尼亚州斯坦福 94305 7 明尼苏达大学信息学研究所,美国明尼苏达州明尼阿波利斯 55455 8 共济会癌症中心,美国明尼苏达州明尼阿波利斯 55455 9 MD 安德森癌症中心神经肿瘤学系德克萨斯大学系统中心,美国德克萨斯州休斯顿 77030 10 神经科学研究生项目,MD 安德森 UTHealth 生物医学科学研究生院,美国德克萨斯州休斯顿 77030 11 癌症生物学研究生项目,MD 安德森 UTHealth 生物医学科学研究生院,美国德克萨斯州休斯顿 77030 * 通信地址:emil-lou@umn.edu (EL);cbpatel@mdanderson.org (CBP);电话:+1-612-625-9604 (EL);+1-713-792-0778 (CBP);传真:612-625-6919 (EL);713-745-0387 (CBP) † 这些作者对本文的贡献相同。 ‡ 这些作者对本文的贡献相同。
用于太空有效载荷的微波专为各种微波频率而设计。它们还能够承受严苛的太空和发射环境。它们为航天器系统中的组件提供电气接口,确保高可靠性。该封装由许多载板组成,基板附着在其上。载板用作金属载体,以支撑蚀刻微波电路的氧化铝基板。基于 CFRP 的载板的自主开发可能取代标准的基于 Kovar 的载板,以将质量减少六倍并使其比现有拓扑更轻。然而,与 Kovar 材料相比,CFRP 的导电性明显较低。较低的导电性直接影响散热、电磁屏蔽、载流能力和表面处理工艺。为了克服这些问题并获得充分的优势,可以将先进的纳米填料碳纳米管 (CNT) 添加到聚合物中。使用 CNT 复合材料不仅可以减轻重量,还可以改善热参数和电参数。本文概述了增强 CFRP 的热性能和电性能的研究,并有助于设计微波封装组件。挑战在于确定合适的制造技术、工艺参数和 CNT 复合材料的特性。
通过近红外 (NIR) 药剂进行的近红外 (NIR) 激光诱导光疗已显示出在癌症治疗中的巨大潜力。然而,由于光疗引起的肿瘤内热量不均匀或细胞毒性单线态氧 ( 1 O 2 ) 分布不均匀导致肿瘤杀伤不足,从而导致肿瘤复发和疗效不佳。为了达到较高的肿瘤杀伤效率,解决方案之一是采用光疗与其他疗法(尤其是化疗药物)的联合治疗。在本文中,通过结合化疗、光热疗法 (PTT) 和光动力疗法 (PDT),设计了一种简单有效的多模式治疗系统,实现了恶性胶质瘤的综合治疗,恶性胶质瘤是脑中最具侵袭性的肿瘤之一。合成了 IR-780 (IR780) 染料标记的成管类肽 (PepIR) 并自组装成晶体纳米管(PepIR 纳米管)。这些 PepIR 纳米管表现出优异的 PDT/PTT 效果,因为通过调节 IR780 密度,IR780 光敏剂在晶体纳米管内被有效填充并相互分离;因此,这些 IR780 分子的自猝灭显著减少。此外,由于纳米管的表面积大,可以实现有效的 DOX 负载,有助于对胶质瘤细胞进行有效的协同化疗。鉴于类肽和类肽纳米管的独特性质,我们相信本研究开发的多模态 DOX 负载 PepIR 纳米管为未来临床胶质瘤治疗提供了巨大的希望。
碳纳米管已被广泛研究。它们的直径和手性赋予它们半导体和金属特性,使其在单电子晶体管、气体存储材料和磁制冷机等纳米级器件中具有吸引力 [1]。此外,一些研究集中于氮化硼 (BN) 纳米材料,包括 BN 纳米管、BN 纳米胶囊、BN 纳米颗粒和 BN 簇。BN 纳米管的结构类似于碳纳米管,由交替的硼原子和氮原子组成,它们完全取代石墨状薄片中的碳原子,原子间距变化很小。1981 年,Ishii 等人报道发现了具有竹子状结构的一维氮化硼 (BN) 纳米结构,他们将其称为 BN 晶须 [2]。然而,直到 1994 年,才首次在理论研究中提出了具有完美管状结构的 BN 纳米结构的存在 [3],之后才于 1995 年通过电弧放电合成。在随后的几年中,大部分研究都集中在合成氮化硼纳米管 (BNNT) 和表征其结构上。近年来,人们对氮化硼纳米管 (BNNT) 的兴趣日益浓厚,因为它们在所有配置中都具有半导体特性,具有较宽的带隙。这些特性使它们特别适合开发紫外发光装置和太阳能电池中的各种应用。此外,它们在极端条件下保持稳定光电特性的能力为新材料开辟了新方向。
审查:“通过诸如价电子(dopingp)等制备中的NIR-VIS-UV吸收光谱培养纳米管的分布”
辐射热计通过吸收介质的热升高来测量光功率。第一台辐射热计由兰利 [ 1 ] 于 1881 年为恒星辐射测量而发明,此后技术不断发展。20 世纪 60 年代,第一批激光器 [ 2 ] 开始商用,美国国家标准与技术研究所 (NIST,West 等 [ 3 , 4 ]) 引入了激光量热法来满足激光功率计校准的需要。辐射测量领域的一个重要里程碑是 1985 年发明的低温辐射计 [ 5 ],它至今仍是该领域最精确的主要标准 [ 6 – 10 ],其 (k = 2) 不确定度低于 0.05%。虽然低温辐射计的不确定度低于室温辐射计,但它们价格昂贵、体积庞大且不方便用户使用。为了实现高精度,低温恒温器中的辐射热计不能加热到超出其线性工作范围,这为可测量的激光功率设定了上限。 这意味着这些仪器的动态范围是有限的,如果测量更高的激光功率,必须使用可追溯到低温辐射计或其他绝对探测器的传递标准探测器。 维持较长的校准链需要时间和人力,并且测量不确定性会在这些链中累积。 为了缩短校准链并使绝对辐射计价格合理且更易于使用,可预测量子效率探测器 (PQED) 于 2013 年开发,它可以在低温 [ 11,12 ] 或室温 [ 13 ] 下工作。 然而,量子探测器在 1 mW 时饱和,因此其测量范围与大多数低温辐射计的测量范围相似。 2010 年进行的 EUROMET 高功率激光器辐射功率国际比对 [ 14 ] 表明,各国计量机构之间 1 W – 10 W 激光功率测量结果的一致性仅为 ∼ 1% 水平。因此,仍然需要
钙钛矿结构 [1] 及其几乎无限适应性的衍生物阵列,必须算作材料科学中最重要的结构之一,其基本的 ABX 3(A = 大阳离子;B = 较小的阳离子;X = 阴离子)结构原型有助于铁电、[2] 压电、[3] 超导、[4] 光化学 [5] 和许多其他重要的技术特性。近来,随着混合 [3,6–8] 或全无机卤化物钙钛矿 ABX [9,10] 结构制造技术的快速发展,人们对钙钛矿的兴趣进一步增加。其中 A 是有机或碱金属反离子,B 通常是铅或锡,X 是卤素,这使得具有光学和光伏特性的材料 [11,12] 可用于太阳能电池、[13,14] 离子导电材料、[15] 超级电容器 [16] 和其他储能设备 [17]。然而,块状卤化物钙钛矿具有反应性,容易发生表面水合 [18] 相变 [19,20] 和高缺陷密度 [21],从而降低了其性能和寿命。因此,人们开发出了降维卤化物钙钛矿,重点关注胶体、[22] 二维、[23] 量子点、[24] 以及薄膜中的分子级 [25] 制备。虽然在如此低的维度上形成钙钛矿可以增强一些理想的特性,但也会增加其降解的趋势,尽管表面钝化可以减少薄膜中的分解。[26] 尽管如此,维度在纳米尺度上仍然是设计和微调卤化物钙钛矿物理性质的关键,因为它在决定电子结构方面起着关键作用。[27]