预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2023年1月12日发布。 https://doi.org/10.1101/2023.01.11.523616 doi:biorxiv Preprint
科隆布,2022 年 12 月 7 日 阿科玛的特殊材料在 NASA 标志性徽标升空时为其提供保护 阿科玛很荣幸被选中保护 Artemis 1 太空发射系统 (SLS) 上的 NASA 标志性徽标。这种创新涂层采用阿科玛的 Kynar Aquatec ® PVDF 乳胶,具有极强的耐用性,可在升空时保持固体火箭助推器上 NASA 的红色“虫子”徽标完好无损。具有历史意义的 Artemis 1 SLS 于 11 月 16 日从佛罗里达州肯尼迪航天中心升空。它将把猎户座飞船送入约 130 万英里,绕月飞行并于 12 月 11 日返回地球。带有 NASA 红色标志的 SLS 助推器是有史以来为飞行建造的最大、最强大的固体推进剂助推器。观看视频。保护徽标的水性清漆由 Arkema 的合作伙伴 Acrymax ® Technologies Inc. 制造。Kynar Aquatec ® PVDF 乳胶使 Acrymax ® Technologies 能够设计出一种在低 VOC、风干系统中具有出色耐久性的水性保护涂层。“我们与 Acrymax ® Technologies 等合作伙伴携手合作,打造定制解决方案。他们能够将这种合作关系扩展到 NASA,并开发出一种足以承受世界上最强大火箭强度的配方,这在很多方面都令人惊叹,”
海得拉巴,2022 年 11 月 28 日:疫苗创新和传染病疫苗开发商全球领导者 Bharat Biotech International Limited (BBIL) 今天宣布,iNCOVACC® (BBV154) 已获得印度中央药品标准控制组织 (CDSCO) 批准,可在紧急情况下限制使用,供 18 岁及以上人群使用,用于异源加强剂量。iNCOVACC® 是一种重组复制缺陷型腺病毒载体疫苗,具有预融合稳定化的 SARS-CoV-2 刺突蛋白。该候选疫苗已在 I、II 和 III 期临床试验中进行了评估,并获得了成功的结果。iNCOVACC® 经过特殊配制,可通过滴鼻剂进行鼻内给药。鼻腔给药系统的设计和开发旨在在中低收入国家实现成本效益。 iNCOVACC® 是与华盛顿大学圣路易斯分校合作开发的,该校设计并开发了重组腺病毒载体构建体,并在临床前研究中评估了其功效。与临床前安全性评估、大规模生产规模扩大、配方和给药装置开发(包括人体临床试验)相关的产品开发由 Bharat Biotech 进行。产品开发和临床试验部分由印度政府通过生物技术部 COVID Suraksha 计划资助。
1 布雷西亚大学放射科学与公共卫生系医学和外科专业系肿瘤内科,ASST-Spedali Civili,25123 布雷西亚,意大利 2 帕多瓦大学帕多瓦医院神经科学系耳鼻咽喉科、头颈外科科,35128 帕多瓦,意大利 3 约翰霍普金斯大学医学院耳鼻咽喉科系头颈外科,美国马里兰州巴尔的摩 21205 4 阿斯图里亚公国卫生研究所头颈肿瘤学系,33011 奥维耶多,西班牙 5 伦敦大学学院癌症研究所,伦敦 WC1E 6BT,英国 6 伦敦大学学院学术头颈中心外科和介入科学分部,伦敦 WC1E 6BT,英国*联系方式:paolo.bossi@unibs.it
摘要:全身接种 COVID-19 和流感疫苗的个体可能会继续支持病毒在上呼吸道中的复制和脱落,从而导致感染的传播。因此,需要一种增强呼吸道粘膜粘膜免疫的疫苗方案来预防大流行。鼻内/肺内 (IN) 疫苗可以通过促进感染部位的 IgA 分泌来促进粘膜免疫。在这里,我们证明,使用脂质体双 TLR4/7 佐剂 (Fos47) 佐剂的灭活甲型流感病毒的肌肉内 (IM) 启动-IN 加强方案可增强全身和局部/粘膜免疫。与使用 Fos47 (IM-Fos47) 的 IM 加强相比,使用 Fos47 (IN-Fos47) 的 IN 加强增强了上呼吸道和下呼吸道的抗原特异性 IgA 分泌。 IN-Fos47 诱导分泌的 IgA 也与多种流感病毒株有交叉反应。在用 Fos47 进行 IN 加强治疗后,肺中抗原特异性组织驻留记忆 T 细胞增加,表明 IN-Fos47 建立了组织驻留 T 细胞。此外,IN-Fos47 诱导的全身交叉反应 IgG 抗体滴度与 IM-Fos47 相当。在 IN 递送 Fos47 后未观察到局部或全身反应原性或不良反应。总之,这些结果表明使用 Fos47 的 IM/IN 方案是安全的,并且可提供局部和全身抗流感免疫反应。
程序/项目/设施文档和可交付成果的格式。软件保证和软件安全数据、信息和计划可被视为具有 NRRS 1441.1 中规定的保留期的质量记录。文档的格式是程序/项目/设施决策。软件保证和软件安全组织应保留记录、报告、指标、分析和趋势结果,并应保留其项目计划的副本以供将来参考和改进。软件保证和软件安全计划(例如,软件保证计划)可以是独立文档,也可以纳入其他文档(例如,软件管理计划、软件开发计划的一部分或程序或项目安全和任务保证 (SMA) 计划的一部分)。
鼻腔内给药的一般概念基于这样的前提:这种非侵入性给药途径至少可以部分采用直接从鼻腔到脑的运输,从而避免肝脏快速代谢药物,绕过血脑屏障 (BBB) 的药物排斥,并最大限度地减少需要用药物充斥整个体循环以将足够高的药物浓度输送到脑病变的需要。13,14 然而,目前仍不清楚 POH/NEO100 的鼻腔内给药途径是否确实能够实现其关键目标,即使药物能够到达其预期的脑内肿瘤目标。这种确认至关重要,因为它将为以下模型提供急需的支持:鼻腔内 NEO100 是一种可行、更安全且可能更好的治疗脑癌患者的方法。在以下报告中,我们介绍了一例复发性 IV 级 IDH 突变型胶质瘤患者的病例,该患者接受鼻内 NEO100 治疗超过 3 年,并取得了良好的效果,并且再次手术使我们能够在 NEO100 给药后获得肿瘤组织,从而能够在肿瘤内检测 POH 及其代谢物 PA。
开发成熟的热保护系统是一个漫长的过程,涉及高级工具,广泛的研究和测试。设计和分析工具用于预测空气热环境,帮助测试和飞行硬件的设计,并支持对热保护系统的热/机械响应进行测试。最近,计算方法的进步有助于减少技术进步的时间和成本,有助于优化材料架构设计,并提高材料属性和性能。虽然模拟太空飞行条件的高触觉测试对于评估和开发TPS材料仍然至关重要,但计算工具已经显示出在减少广泛测试的需求方面的希望,并且可以帮助快速跟踪设计周期。
尽管当前已批准的Covid-19疫苗具有显着的效率,但仍有几个机会继续开发针对SARS-COV-2和未来致命的呼吸道病毒。特别是,受限的疫苗接入和犹豫的免疫率有限。此外,当前的疫苗无法防止突破感染,导致病毒循环延长。为了改善通道,设计具有增强热稳定性的亚基疫苗,以消除对超冷链的需求。从该疫苗中排除传染性和遗传材料也可能有助于减少疫苗的犹豫。为了防止突破感染,探索了鼻内免疫以诱导粘膜免疫。由壳聚糖(CS)溶液中额外免疫助剂制成的受体结合结构域(RBD)多肽组成的原型疫苗诱导了1或2剂后实验室小鼠中的高水平的RBD特异性抗体。抗体反应耐用,高滴度在皮下疫苗接种后至少五个月持续存在。血清抗RBD抗体均包含IgG1和IgG2A同种型,这表明该疫苗诱导了混合的Th1/Th2反应。RBD疫苗接种无CS配方导致抗RBD反应最少。 比介绍剂量添加了CpG寡核苷酸在CS和RBD疫苗配方中比白介素12(IL-12)更有效地增加了抗体滴度。 在稳定性方面,疫苗在室温(21-22°C)或4°C下至少持续一个月时不会失去活性。RBD疫苗接种无CS配方导致抗RBD反应最少。比介绍剂量添加了CpG寡核苷酸在CS和RBD疫苗配方中比白介素12(IL-12)更有效地增加了抗体滴度。在稳定性方面,疫苗在室温(21-22°C)或4°C下至少持续一个月时不会失去活性。重要的是,生成的抗体与与SARS-COV-2变体相关的RBD突变体(包括Alpha,beta和Delta变体)的反应性,并抑制RBD与其同源受体血管紧张素转化酶2(ACE2)的结合。当鼻内递送时,疫苗会诱导RBD特异性粘膜IGA抗体,可防止上呼吸道中的突破性感染。总的来说,数据表明设计的疫苗平台具有多功能,适应性,并且能够克服当前Covid-19疫苗的关键限制。