AD 适航指令 A/M 飞机 ADF 自动测向 [设备] ADS 空中数据系统 AHRS 姿态航向参考系统 AOA 攻角 AOS 侧滑角 AP 自动驾驶仪 APP 进近 ATC 空中交通管制 ATCAS 空中交通管制自动化系统 CAA 民航局 CG 重心 C L 升力系数 DAFCS 数字式自动飞行控制系统 DME 测距设备 EFIS 电子飞行仪表系统 FAA 联邦航空管理局(美国) FDR 飞行数据记录器 FL 飞行高度 FOD 外来物体损坏 FTB 飞行试验台 GNC 引导导航控制 GPS 全球定位系统 IAS 指示空速 ICAO 国际民用航空组织 M 马赫数(= 边界外的流速与当地音速之比,在海平面大约为 340 米/秒) MAC 平均气动弦 (M)MEL(主)最低设备清单 METAR 气象报告 MFC 多功能计算机 NM 海里(= 1.852 米) OAT室外空气温度(°C、°K、°F 外部空气)PF 飞行员飞行
一所航空航天,运输与制造学院,克兰菲尔德大学,克兰菲尔德,贝德福德,MK43英国,英国,Z.Serfontein@cranfield.ac.uk,orcid https://orcid.org/0000-0000-0000-0000-0002-5704-1677王国,j.kingston@cranfield.ac.uk,orcid https://orcid.org/0000-0002-3605-5842 C Cranfield,Cranfield University,Cranfield,Bedford,Bedford,Mk43 0al,英国,S.E.Hobbs@cranfield.uk,ORCID https://orcid.org/0000-0002-1464-5382 D D d d制造业,克兰菲尔德大学,克兰菲尔德,贝德福德,MK43 0al,英国,a.i.aria@cranfield.ac.uk,Ordid https://orcid.org/0000-0000-0000-0000-6305-3906 F Belstead Research Ltd. ian.holbrough@belstead.com G Belstead Research Ltd.,387 Sandyhurst Lane,Ashford,TN25 4PF,英国,james.beck@belstead.com一所航空航天,运输与制造学院,克兰菲尔德大学,克兰菲尔德,贝德福德,MK43英国,英国,Z.Serfontein@cranfield.ac.uk,orcid https://orcid.org/0000-0000-0000-0000-0002-5704-1677王国,j.kingston@cranfield.ac.uk,orcid https://orcid.org/0000-0002-3605-5842 C Cranfield,Cranfield University,Cranfield,Bedford,Bedford,Mk43 0al,英国,S.E.Hobbs@cranfield.uk,ORCID https://orcid.org/0000-0002-1464-5382 D D d d制造业,克兰菲尔德大学,克兰菲尔德,贝德福德,MK43 0al,英国,a.i.aria@cranfield.ac.uk,Ordid https://orcid.org/0000-0000-0000-0000-6305-3906 F Belstead Research Ltd. ian.holbrough@belstead.com G Belstead Research Ltd.,387 Sandyhurst Lane,Ashford,TN25 4PF,英国,james.beck@belstead.com
摘要:区域和全球航空旅行的持续增长导致空中和地面交通拥堵加剧。尽管由于经济衰退和灾难事件偶尔会出现暂时的衰退,但自 20 世纪 60 年代以来,所有旅行的平均增长率一直很高。结果:拥堵制约了航空运输业的发展,造成了航班延误并降低了整个系统的效率,迫切需要开发更有效的空中交通管理 (ATM) 方法。新的 ATM 技术、程序、空域自动化方法和决策支持工具正在研究和开发中,以便在从未来几年到 2020 年及以后的时间范围内部署。随着这些方法变得越来越先进和复杂,空中交通管理系统中相关实体之间信息生成、共享和传输的要求也急剧增加。然而,当前的航空通信系统不足以满足这些先进空中交通系统所产生的未来信息传输需求。因此,NASA 格伦研究中心正在开展研究项目,以开发能够满足这些未来要求的通信方法和关键技术。作为这一过程的一部分,研究、研讨会、测试和实验以及研究和分析已经确定了许多研究和技术开发需求。本文的目的是概述在这些活动中确定的关键研究和技术需求,并解释如何确定这些需求。
摘要:自1960年代NASA的Apollo计划成立以来,数字双胞胎(DT)技术已经显着发展,在航空航天行业及其他地区至关重要。本文探讨了DTS的历史发展,从早期的“物理双胞胎”过渡到由物联网(IoT),机器学习和数据分析的进步驱动的复杂虚拟模型。在航空航天中,DTS通过实现实时监控,预测性维护和对飞机和航天器系统的高保真模拟来改善产品生命周期管理,运营效率和成本效益。该研究概述了DTS物理现实,虚拟表示及其相互联系的核心组成部分,并提出了现实世界的应用,例如优化重型燃料飞机发动机和潮汐涡轮机。尽管有进步,但仍然存在诸如数据集成,传感器可靠性和实时处理之类的挑战。尽管如此,DT技术的持续发展有望提高多个行业的绩效,安全性和创新。本文通过强调数字双胞胎在技术和工业实践的未来中的变革性作用来结束。
(Y/N) AAE2003 飞机系统简介 3 全部 N/AYYYY AAE2005 航空工程电气和电子技术 3 全部 N/ANYYY AAE3001 空气动力学基础 3 全部 N/ANNYY AAE3003 飞机推进系统 3 全部 N/ANNYY AAE3006 安全性、可靠性和合规性 3 全部 N/ANNYY AAE3010 航空公司运营 3 全部 N/ANNYY AAE3011 飞机性能和飞行管理 3 全部 N/ANNYY AAE4002 顶点项目 6 部门 48403 NNNY AAE4006 飞行力学和控制系统 3 全部 N/ANNYY AAE4009 航空公司和机场运营中的数据科学和数据驱动优化 3 全部 N/ANNYY AAE4011 无人自主系统中的人工智能3 ALL N/ANNYY AAE4015 航空大数据高级事故与危害分析 3 ALL N/ANNYY AAE4105 工程复合材料 3 ALL N/ANNYY AAE4111 可压缩空气动力学 3 ALL N/ANNYY AAE4112 卫星系统工程与设计 3 ALL N/ANNYY AAE4113 航空推进 3 ALL N/ANNYY AAE4301 航空电子系统 3 ALL N/ANNYY AAE4904 航空气象学 3 ALL N/ANNYY AAE5002 人为因素、事故预防与飞机维护 3 部门 48403 NNNY AAE5101 下一代空中交通管制与空中交通流量管理 3 部门 48403 NNNY AAE5103 航空工业人工智能 3 部门 48403 NNNY AAE5106 飞行标准和适航性 3 部门 48403 NNNY AAE5109 航空高级神经工效学和认知科学 3 部门 48403 NNNY AAE5110 航空运输经济与政策 3 部门 48403 NNNY AAE5201 空气动力学和计算流体动力学 3 部门 48403 NNNY AAE5205 飞机发动机系统和燃烧 3 部门 48403 NNNY AAE5206 航空航天工程中的人工智能 3 部门 48403 NNNY
学位课程目前已获得皇家航空学会的批准,对于那些寻求从事航空航天 /航空 /航空事业的人来说,被认为具有重要的价值和适当的学习。已经开发了对社会计划的批准,以应对对通常没有其他专业机构监控的计划进行独立的同行评估。该协会能够从所有相关学科的适当学术界以及航空航天行业各个部门的专业人士中获取专家投入。在质量保证局(QAA)运营的当前质量保证制度中,专业和法定认证被认为是一种重要方法,证明有关计划可能符合QAA标准。鉴于在工程和技术的情况下赋予认可的悠久经验,社会运营的过程的严格性得到了认可,并且对学者的调查已经证明了在英国和海外批准提供的营销优势。鉴于在工程和技术的情况下赋予认可的悠久经验,社会运营的过程的严格性得到了认可,并且对学者的调查已经证明了在英国和海外批准提供的营销优势。
摘要:AIDGE 是一种用于嵌入式人工智能 (AI) 的新型软件开发平台。它旨在以完全开放、透明和可追溯的方式导入甚至学习深度神经网络 (DNN) 并为目标硬件架构生成优化代码。其目的是避免对不透明和非主权工具或元素的依赖,确保竞争性能并有利于嵌入式机器学习 (ML) 组件的认证。在本文中,我们根据有关将 ML 应用于关键航空系统的航空认证标准不断提高的情况,对使用该平台的潜在好处进行了初步分析,并根据 AIDGE 可以自动生成的工件指出了可能的认证步骤。
印度材料与工艺工程促进会 印度航空学会大厦,Suranjan Das 路口 New Thippasandra,班加罗尔 560 075 网站:www.isampe.org 第三十八届年会 2024 年 11 月 8 日 Dr. VM Ghatage 会议中心,HAL,Marathahalli,班加罗尔