联合学习(FL)促进了客户在培训共享的机器学习模型的情况下合作,而无需公开各个私人数据。尽管如此,FL仍然容易受到效用和隐私攻击的影响,特别是逃避数据中毒和建模反演攻击,从而损害了系统的效率和数据隐私。现有的范围通常专门针对特定的单一攻击,缺乏普遍性和全面的防守者的观点。为了应对这些挑战,我们介绍了f ederpography d efense(FCD),这是一个统一的单框架,与辩护人的观点保持一致。FCD采用基于行的转座密码加密,并使用秘密钥匙来对抗逃避黑框数据中毒和模型反转攻击。FCD的症结在于将整个学习过程转移到加密的数据空间中,并使用由Kullback-Leibler(KL)差异引导的新型蒸馏损失。此措施比较了本地预审最终的教师模型对正常数据的预测以及本地学生模型对FCD加密形式相同数据的预测的概率分布。通过在此加密空间中工作,FCD消除了服务器上的解密需求,从而导致了计算复杂性。我们证明了FCD的实践可行性,并将其应用于对基准数据集(GTSRB,KBTS,CIFAR10和EMNIST)上的Evasion实用程序攻击。我们进一步扩展了FCD,以抵御CI-FAR100数据集中的Split FL中的模型反转攻击。与第二最佳方法相比,我们在各种攻击和FL设置中进行的实验表明了对效用逃避(影响> 30)和隐私攻击(MSE> 73)的实际可行性和巨大性。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
参考[1] Hou,Saihui等。“通过重新平衡来逐步学习统一的分类器。”CVPR2019。[3] Liu,Yaoyao,Bernt Schiele和Qianru Sun。“用于课堂学习学习的自适应聚合网络。”CVPR 2021。[4]刘,Yaoyao,Bernt Schiele和Qianru Sun。“ RMM:用于课堂学习学习的增强记忆管理。”神经2021。[5] Rebuffi,Sylvestre-Alvise等。“ icarl:增量分类器和表示学习。”CVPR2017。[6] Li,Zhizhong和Derek Hoiem。“学习而不会忘记。”TPAMI2017。
问题:大的地球大黄蜂(Bombus terrestris)保持了社会核心肠道微生物,与蜜蜂相似,蜜蜂对宿主的健康和抵抗起着重要作用。在实验室条件下使用商业蜂箱进行的实验仅限于垂直传播的微生物和忽视环境因素的影响或微生物的外部收购。各种环境和景观水平因素可能会影响授粉昆虫的肠道菌群,这对农业生态系统的授粉媒介健康和舒适性产生了影响。仍然,尚不完全清楚是否可以对大黄蜂微生物群具有重要影响。在这里,我们在半场实验中进行了测试,如果大黄蜂微生物群在暴露于户外笼子内不同型号多样性时随着时间的流逝而变化。我们使用商业蜂箱分别与巢环境或暴露的外部环境区分垂直和水平传播的细菌。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
IL-2家族由IL-2、IL-4、IL-7、IL-9、IL-15和IL-21组成,是免疫反应的关键调节者。胰腺作为重要的内分泌和消化器官,其功能受免疫系统的调控。研究表明,IL-2家族各细胞因子通过参与免疫系统的调控,影响胰腺疾病的发生发展。本文综述了IL-2家族成员的结构和功能特点,重点介绍了其在急性胰腺炎、慢性胰腺炎和胰腺癌等胰腺疾病中的分子机制,强调了相关蛋白在调节免疫反应和疾病进展中的重要性,为胰腺疾病的新生物标志物、疾病的早期诊断、疾病严重程度的评估以及新的治疗方案的开发提供有价值的见解。以下部分总结了本研究的见解。
结果:肺炎支原体分离株对红霉素和阿奇霉素的耐药率均为100%(62/62)。乙酰螺旋霉素(16元大环内酯类)的最低抑菌浓度(MIC)低于红霉素和阿奇霉素。2023年阿奇霉素的MIC明显高于2021年和2022年。未观察到对四环素和左氧氟沙星的耐药。74.2%和25.8%的分离株被鉴定为P1型1型和P1型2型,M4-5-7-2(61.3%)和M3-5-6-2(22.6%)为主要的多位点可变数目串联重复分析(MLVA)类型。所有分离株均存在A2063G突变(100%)。59例患者中,45例(76.3%)为重症肺炎支原体肺炎,14例(23.7%)合并感染。发热持续时间为12天(1~30天),大环内酯类抗生素治疗后发热持续时间为8天(1~22天)。
年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。