摘要:数据存储和通信的系统必须是安全的,并且加密算法对此至关重要。在这项工作中,比较了Rivest-Shamir-Adleman(RSA)算法和高级加密标准(AES)方法。我们根据AES和RSA加密算法的数学原理,安全特征,性能特征和实际考虑对AES和RSA加密算法进行了全面比较。我们还讨论了他们在各种情况下的优势和局限性,向信息安全从业者和决策者提供了有见地的信息。通过分析和对比AES和RSA的关键方面,我们旨在为理解这些广泛使用的加密算法做出贡献,并协助为特定的安全要求选择适当的算法。我们讨论了这两种算法之间的数学和算术比较,并在安全性,速度和实施复杂性方面评估它们的性能。我们的分析表明,尽管AE为对称密钥加密提供了更好的性能,但RSA为非对称密钥加密提供了安全的机制。我们还强调,根据应用程序的特定需求,选择正确的加密算法是多么重要。关键字:加密算法,RSA,安全性,速度,实现复杂性,AES。1。简介每天向数百万用户发送到数百万用户的大量数据强调了安全通信渠道的关键作用。随着越来越多的数据被传输并以电子方式保存,确保数据安全性比以往任何时候都重要[10]。加密算法广泛用于在通信和存储系统中保护数据。选择适当的加密算法对于提供足够的安全性并确保特定应用程序的最佳性能至关重要[3]。高级加密标准(AES)和激烈的Shamir-Adleman(RSA)算法是两种最流行的加密方法。RSA使用不对称的密钥加密方法,而AES使用对称键。AES和RSA都有其优势和局限性,并且选择适当的算法需要对其数学,算法和性能方面进行透彻的了解[5]。国家标准技术研究所(NIST)定义了AES算法,以其在软件和硬件实施方面的效率而闻名,使其非常适合具有严格性能要求的应用。但是,与AES相比,RSA技术的加密和解密速度可能较慢。这是因为它基于分解大量数的数学复杂性,这在键分布和身份验证方面提供了鲁棒性。此外,RSA通常用于密钥交换和数字签名,而AE通常用于对称大量数据的对称密钥加密。在本文中,我们根据其数学原理,安全特征,绩效特征和实际考虑对AES和RSA加密算法进行了全面比较。2。国家标准技术研究所(NIST)于1998年创建了它,以扮演数据加密标准(DES)的角色。我们还讨论了他们在各种情况下的优势和局限性,为信息安全领域的决策者和从业者提供了宝贵的见解。通过分析和对比AES和RSA的关键方面,我们旨在为理解这些广泛使用的加密算法做出贡献,并协助为特定的安全要求选择适当的算法。材料和方法提供了一种安全的对称密钥加密算法,该算法提供了一种安全的加密和解密数据的方法,称为高级加密标准(AES)。AES是一个在固定长度数据块上运行的块密码。它使用对称键进行加密和解密,这意味着两个操作都使用相同的密钥。AES支持128、192和256位的关键长度,其安全性取决于密钥长度[1]。AES使用替代 - 帝国网络(SPN)结构,该结构由几轮操作组成。在每个回合中,AES将四个转换应用于输入块:字节替换(Subbytes),行移动(shiftrows),列混合(MixColumns)和键添加(AddRoundKey)[1]。这些转换旨在提供混乱和扩散,这是任何加密算法的重要特性。AE的数学分析重点介绍了SPN结构的特性,例如其关键时间表,扩散和
参考文献1。Forman MA,Steiner JM,Armstrong PJ等。 ACVIM关于猫炎中胰腺炎的共识声明。 J VET Intern Med。 2021; 35(2):703–723。 doi:10.1111/jvim.16053 2。 Cridge H,Twedt DC,Marolf AJ,Sharkey LC,Steiner JM。 狗急性胰腺炎的诊断进展。 J VET Intern Med。 2021; 35(6):2572–2587。 doi:10.1111/jvim.16292 3。 Huth SP,Relford R,Steiner JM,Stontownsend MI,Williams DA。 ELISA的分析验证用于测量犬胰腺特异性脂肪酶:犬胰腺特异性Forman MA,Steiner JM,Armstrong PJ等。ACVIM关于猫炎中胰腺炎的共识声明。J VET Intern Med。2021; 35(2):703–723。doi:10.1111/jvim.16053 2。Cridge H,Twedt DC,Marolf AJ,Sharkey LC,Steiner JM。 狗急性胰腺炎的诊断进展。 J VET Intern Med。 2021; 35(6):2572–2587。 doi:10.1111/jvim.16292 3。 Huth SP,Relford R,Steiner JM,Stontownsend MI,Williams DA。 ELISA的分析验证用于测量犬胰腺特异性脂肪酶:犬胰腺特异性Cridge H,Twedt DC,Marolf AJ,Sharkey LC,Steiner JM。狗急性胰腺炎的诊断进展。J VET Intern Med。2021; 35(6):2572–2587。doi:10.1111/jvim.16292 3。Huth SP,Relford R,Steiner JM,Stontownsend MI,Williams DA。 ELISA的分析验证用于测量犬胰腺特异性脂肪酶:犬胰腺特异性Huth SP,Relford R,Steiner JM,Stontownsend MI,Williams DA。ELISA的分析验证用于测量犬胰腺特异性脂肪酶:犬胰腺特异性
年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
,加密来源存储在档案中并不罕见,而没有被解密。这是一个艰苦的过程,可以解密历史密码,并且通常情况下,使用这些文件的历史学家和档案管理员没有资源来构成对未知密码的密码分析。这一事实可能导致轰动一时的发现,例如玛丽·斯图尔特(Mary Stuart)在法兰西(Lasry等,2023年)中发现未知的信件。对于对历史密码感兴趣的隐性分析师,系统地搜索档案并不总是直接的。然而,借助特定的搜索条目,例如“未经决定的”,“未知的书面”,更有效地通过与经验丰富的档案管理员交谈,可以找到此类文件(Megyesi等,2024)。在基于计算机的工具的协助下,例如De-Crypt Project 1未经封闭的文档提供的工具可以通过(半)自动方式在自己的comperer上进行隐式分析和解密。在这篇简短的论文中,我们介绍了瑞典国家档案馆的加密信件的解密和密码分析,该信件尚未
在过去的半个世纪中,胰腺导管腺癌(PDAC)的五年生存率几乎没有提高。它固有地抵抗了FDA-批准的免疫疗法,这改变了其他晚期实体瘤患者的前景。积累的证据将这种抵抗力与其标志性免疫抑制环境有关,后者灌输了在肿瘤 - 纤维化效应效应T细胞中进行性功能障碍。该环境是在免疫抑制细胞种群(包括调节性T细胞(T Reg))的肿瘤开始时建立的,这些细胞(T Regs)与恶性PDAC的进展并行积累。因此,T Regs的治疗操作已引起了显着的科学和商业关注,这是由于发现丰富的肿瘤 - 填充t regs与PDAC患者的预后较差相关的发现所增强。在此,我们提出了一种机制,以抗PDAC对抗PD-1和CTLA-4免疫疗法的抗性,并重新评估追求T型剂量靶向疗法的理由,以鉴于最近的研究,这些研究促进了患者来源的肿瘤样品的免疫景观。我们评估正在逐步限制对PDAC治疗的免疫抑制的策略,以及提供初步证据的临床活动证据的SIGNPOST早期试验。在这种情况下,我们发现了对PDAC持续开发T Reg的免疫疗法的投资的令人信服的论点。
简介:了解心血管参数、因负荷增加而引起的认知压力和心理健康之间的相互作用对于当今综合健康策略的发展至关重要。通过实时监测心电图 (ECG) 和光电容积图 (PPG) 等生理信号,研究人员可以发现认知任务如何影响心血管和心理健康。认知压力产生的心脏生物标志物可作为自主神经系统功能的指标,可能反映与心脏和心理健康相关的状况,包括抑郁和焦虑。本研究的目的是调查认知负荷如何影响 ECG 和 PPG 测量,以及这些测量是否可以预示抑郁和焦虑症期间的早期心血管变化。
两种 OGG1 调节剂均减少了 KBrO 3 诱导的 AP 位点(图 2G),我们发现 TH5487 的 DNA 链断裂(γH2AX)更少(图 2H),表明 OGG1 糖基化酶活性受损会导致 AP 位点数量减少。相反,我们发现 TH10785 的 DNA 链断裂(γH2AX)更多(图 2H),证实 TH10785 在细胞中的催化活性会导致 DNA 链断裂。总之,这些结果表明 TH10785 激活的 OGG1 具有新的细胞作用,即比 8-oxoG 更倾向于 AP 位点。接下来,我们测试了 TH10785 在细胞中诱导 β,δ 消除的程度。我们假设同时刺激 β,δ-消除和阻断 PNKP1 活性应会使系统因未修复的 DNA 单链断裂而超载(图 1A)。因此,在单独暴露于 OGG1 抑制剂或激活剂(图 3A、图 S26)和类似化合物(表 S6 和图 3B)或与 PNKP1i 联合使用的 U2OS 细胞中,使用标记物 γH2AX 和 53BP1 通过 IF 测量 DDR。我们发现 PNKP1 抑制剂只有与引起体外 β,δ-裂解酶活性的 OGG1 激活剂联合使用时才会诱导强 DDR。为了评估这种因果关系,我们使用 RNA 测序监测转录变化,发现 PNKP1i 与 TH10785 联合使用(而非单独使用)会诱导识别和修复 DNA 双链断裂的关键参与者的转录显着上调(图 3C)。此外,TH10785 与 PNKP1 抑制相结合时细胞活力降低,但 TH5487 则不会降低(图 3D 和 3E)。这些结果表明,TH10785 激活 OGG1 β,δ-裂解酶活性在体外和细胞内均会发生,并且 PNKP1 对于避免 DNA 损伤的积累和随之而来的细胞死亡至关重要。总之,我们提出了一种新概念,即通过酶导向的小分子催化剂诱导 OGG1 β,δ-裂解酶活性,结合到酶的活性位点(图 3F、S27 和 S28)。TH10785 的存在引起的新催化功能更倾向于 AP 位点而不是 8-oxoG,并在体外和细胞内产生 PNKP1 依赖性。改善或重新规划处理氧化性DNA损伤的修复途径对许多疾病(如炎症、癌症、阿尔茨海默氏症或衰老)具有重要意义,这里概述的概念允许以新的方式控制和重新规划修复途径(24)。
量子通信基于量子态的生成和量子资源在通信协议中的利用。目前,光子被认为是信息的最佳载体,因为它们能够实现长距离传输,具有抗退相干性,而且相对容易创建和检测。纠缠是量子通信和信息处理的基本资源,对量子中继器尤为重要。超纠缠是一种各方同时与两个或多个自由度 (DoF) 纠缠的状态,它提供了一种重要的额外资源,因为它可以提高数据速率并增强错误恢复能力。然而,在光子学中,处理线性元素时,信道容量(即最终吞吐量)从根本上受到限制。我们提出了一种使用超纠缠态实现更高量子通信传输速率的技术,该技术基于在单个光子上多路复用多个 DoF,传输光子,并最终在目的地使用贝尔态测量将 DoF 解复用为不同的光子。按照我们的方案,只需发送一个光子即可生成两个纠缠的量子比特对。提出的传输方案为具有更高传输速率和对可扩展量子技术的精细控制的新型量子通信协议奠定了基础。
越来越多的自动化和人工智能 (AI) 系统会提出医疗建议,包括个性化建议,这些建议可能会偏离标准护理。法律学者认为,遵循这种非标准治疗建议会增加医疗事故的责任,从而破坏潜在有益的医疗 AI 的使用。然而,这种责任在一定程度上取决于陪审员的判断:当医生使用 AI 系统时,陪审员会在哪些情况下追究医生的责任?方法:为了确定潜在陪审员的责任判断,我们对 2,000 名美国成年人的全国代表性样本进行了在线实验研究。每位参与者阅读了 AI 系统向医生提供治疗建议的 4 个场景中的 1 个。场景改变了 AI 建议(标准或非标准护理)和医生的决定(接受或拒绝该建议)。随后,医生的决定造成了伤害。参与者随后评估了医生的责任。结果:我们的结果表明,在其他条件相同的情况下,从人工智能系统获得提供标准护理建议的医生可以通过接受而不是拒绝该建议来降低责任风险。但是,当人工智能系统推荐非标准护理时,拒绝该建议并提供标准护理并没有类似的屏蔽效果。结论:侵权法制度不太可能破坏人工智能精准医疗工具的使用,甚至可能鼓励使用这些工具。