由于其独特的属性和应用程序而产生的利息。此外,它们已在广泛的应用中应用,包括催化,储能和生物医学工程。3,4许多先前的研究报道了Ag 2 O /TiO 2,5 WO 3 /ZnO NC,6个SNO 2 /MGO NCS,在抗菌中使用2 O 3 /ZnO NCS 8中的7中,以及由于其出色的特性而进行的抗癌应用。此外,通过添加另一种材料(石墨烯(GO),氧化石墨烯(RGO)(RGO)和聚合物),可以通过改进的合成过程来增强这些NC的物理化学特性。不同的方法,用于制备和生物医学的应用,以减少氧化石墨烯(RGO)的不同金属氧化物NP,以提高其物理化学特性。9,10,例如水果提取物(凤凰
图 3:(a) 和 (b) 通过对 1 nm 和 2 nm 厚的 a-Si 进行去湿处理获得的 Si NC 的 SEM 图像,显示 NC 的尺寸均匀;(c) 从 1 nm 厚的 a-Si 获得的单个 NC 的 TEM 横截面图像。插图中给出了图像的 FFT 和 NC 的缩放。
文章历史:在行业中,加工期间从切割区域中去除热量提出了一个重大挑战。因此,在碳纤维增强聚合物(CFRPS)加工期间,对合理定价和环境安全的冷却剂的需求增加了。这项工作合成并表征了绿色二氧化钛(TIO 2)和碳纳米管(CNT),以创建具有不同比例(9:1、7:3和5:5)的TIO 2 /CNTS纳米复合材料(NC)。研究NCS的稳定性,作为基础油的潜在填充物来创建用于加工碳纤维增强塑料(CFRPS)的纳米油,使用多种分析技术来表征它们,包括Brunauer-Emmett-Teller(BET),高分辨率SEM/EDS,高分辨率SEM/EDS,高分辨率,高分辨率,Xrd,xrd and FIRD。NCS的FTIR光谱表明与C = C和Ti-O键一致的吸收峰,产生分配给TI-O-C和C-O键的峰。由于CNT和TIO 2的一级峰重叠,因此归因于CNT的峰几乎不可见,并且很容易识别鉴定鉴定的CNT。由于其较大的表面积,孔体积和稳定性作为纳米悬浮,TIO 2 /CNT(5:5)提供了与其他NC相比的显着效果:这是利用绿色泰坦尼亚的研究文章的新颖性。这些混合动力NC解决了与单个NC的不可控制的聚集有关的挑战。因此,得出结论,TIO 2 /CNTS NC是潜在的加强基础油中加工的填充剂。
WBCSD在促进对公司如何通过诸如自愿碳信用等工具之外采取的行动的理解方面发挥了关键作用。此贡献包括发布诸如“超越价值链行动的案例”之类的报告,该报告介绍了超越价值链行动的概念,并概述了公司应参与这些行动和投资的原因。此外,我们还通过“负责任地去除碳:采用碳去除碳的商业指南”和NCS通过“买家的自然气候解决方案碳信用额”和NCS提供有关碳去除的指导。此外,我们积极地领导自然气候解决方案联盟,以促进NCS市场的增长。尽管有这些发展,但所有主要参与者仍在加快碳信用采购进展的许多工作。
12.2023 |提到的所有颜色代码均基于NCS -Natural ColorSystem®©属性,并在NCS Color AB,Stockholm 2012或Ral Color Standard的许可下使用。受范围和产品技术的改变,恕不另行通知。Rockfon对打印错误不承担任何责任。
零维 (0-D) 卤化铅钙钛矿纳米晶体 (NC) 因其优异的性能,例如高光致发光量子产率 (PLQY) 以及尺寸和成分控制的可调发射波长,在光电器件领域引起了人们的广泛兴趣。然而,铅钙钛矿 NC 中铅 (Pb) 元素的毒性是钙钛矿 NC 商业化应用的瓶颈。在此,我们报道了一种简便的配体辅助合成方法,实现了无铅 Cs 3 Cu 2 Cl 5 NC,其 PLQY 高达 ∼ 70% 并且对环境氧气/水分具有良好的稳定性,是一种很有前途的下转换材料。它具有高 PLQY 和大斯托克斯位移(∼ 300 nm)的优点,这源于 Jahn-Teller 畸变和自陷激子 (STE) 的影响。此外,Cs 3 Cu 2 Cl 5 NCs 嵌入复合膜 (NCCF) 被用于增强硅 (Si) 光电探测器的紫外线 (UV) 响应。外部量子效率 (EQE) 测量表明,基于 NCCF 与 Si 光电二极管的结合,紫外线响应可从 3.3% 大幅提高至 19.9% @ 295 nm。我们的工作提供了一种有效的方法来开发高效、稳定的无铅 Cs 3 Cu 2 Cl 5 NCs,用于太阳盲紫外线光电探测器。
在这项研究中,在存在稳定剂聚乙烯醇(PVA)的情况下,通过SOL凝胶方法合成CuO NP,Cu-MNNC和Cu-Co NCS。这些纳米颗粒的特征是通过傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和X射线衍射(XRD)技术来表征。通过FTIR分析验证了PVA整合与纳米颗粒的键合的化学结构和存在。SEM研究表明,CuO NP,Cu-Mn NCS和Cu-Co NC的平均粒径分别为64.5、87.5和69.0 nm。此外,XRD分析还支持其纳米尺寸。分别针对2、2-二苯基-1-苯基羟基(DPPH)评估了抗氧化剂和酶抑制活性,分别为78.9、67.8和60.8 g/mL的IC 50值。抗氧化活性表明它们抑制了氧化代谢产物的作用。IC 50值是一种定量措施,揭示了在体外阻断生物学过程所需的某些抑制性化学物质的存在。生物学成分可能是一种酶,微生物或细胞受体。发现CuO NP,Cu-MN NCS和Cu-Co NC的酶抑制活性分别为18.5、23.7和34.5 UM。这些特征性能表明这些纳米复合材料具有生物医学应用。此外,它们可以有效地用于治疗目的。
卤化物钙钛矿纳米晶体:合成、生长机制、超结构、异质结构摘要:卤化物钙钛矿半导体可以将传统无机半导体的高效工作原理与新兴有机和混合材料的低温溶液加工性相结合,为廉价发电和发光提供了一条有希望的途径。随着人们对这类材料的兴趣激增,胶体卤化物钙钛矿纳米晶体 (NC) 的研究在过去十年中发展迅速。本次演讲将重点介绍我们团队在合成方面的几项发现,例如我们最近研究的各种外源阳离子和酸平衡对钙钛矿 NC 生长的影响,这可以导致形成具有特殊形状的 NC(例如空心结构)和 NC 异质结构(例如 CsPbBr3/PbS 异质结构),通过促进/抑制所选材料的异质成核。我还将讨论我们在超结构中 NC 排序方面的发现,以及低温如何影响排序程度。
通过更好地保护,管理和恢复自然,NC是立即效力,包容和竞争性地减少排放的最佳方法之一。这些解决方案包括各种可以减少或避免排放的景观特定行动,例如保护有转换风险的湿地,更好地管理农业用地和恢复森林。一项具有里程碑意义的研究估计,每年以78兆2 e的NC投资在加拿大的NCS投资潜力,相当于2021年的年度排放量减少了约11%。1天然气候解决方案与实现净零的其他动作相同,例如减少化石燃料使用的排放。作为减少化石燃料总体使用的补充,NC占所有潜在排放减少的33%,并可以帮助实现加拿大2030年的气候目标。