毒理病理学会很高兴地授予 David Malarkey 2024 年 STP 终身成就奖,以表彰他在毒理病理学领域的职业生涯贡献以及他对毒理病理学会的杰出服务和积极参与。Malarkey 博士获得了康涅狄格州布里奇波特大学的生物学学士和硕士学位。获得这些学位后,他以研究生身份完成了波士顿大学医学院第一年的学习,随后获得了马萨诸塞州格拉夫顿塔夫茨大学的兽医学学位、波士顿安吉尔纪念动物医院的病理学住院医师培训以及北卡罗来纳州立大学 (NCSU) 的病理学和生物技术博士学位。他先是在北卡罗莱纳州立大学巴尔的摩分校担任病理学助理教授六年,随后在北卡罗来纳州国家环境健康科学研究所 (NIEHS) 担任病理学家和研究员,并很快晋升为国家毒理学计划 (NTP) 细胞和分子病理学分会病理学组负责人。
● 2023 年小型卫星研讨会:未来战场 - 非地球静止轨道系统对频谱有何影响(2023 年 2 月 7 日至 9 日) ● 新美国低地球轨道卫星星座:为什么智能共享规则在太空中如此重要(2022 年 10 月 24 日) ● EDICON 2022 卫星宽带领域的最新趋势:低地球轨道、中地球轨道、地球轨道和巨型星座(2022 年 10 月 26 日) ● IEEE 无线和微波技术会议 (WAMICON 2022)(2022 年 4 月 27 日至 28 日) ● 卫星 2022 主持人小组讨论如何重新定义小型卫星地面系统和基础设施(2022 年 3 月 21 日) ● 2022 年东北射电天文台公司 (NEROC) 研讨会(由麻省理工学院主办)关于本科无线电科学课程(2022 年 2 月24,2022) ● 卫星 2021 主持人小组讨论如何克服设计限制和构建完美的低成本天线(2021 年 9 月 9 日)● EDICON 2021 当今的卫星宽带格局:LEO、MEO、GEO 和巨型星座(2021 年 8 月 18 日)● On Orbit 播客采访 Jeffrey Hill 关于平板天线技术(2021 年 8 月 6 日)● 空间数字论坛 2021 - 当今的卫星能做什么?了解新服务和功能(2021 年 7 月 26 日)● 主持人美国国家科学院工程与医学学院 (NASEM) 关于克服女性创业结构性障碍的研讨会(2021 年 6 月 21 日)● 密歇根大学气候与空间研讨会 - LEO 通信系统格局:技术进步和干扰缓解(2021 年 4 月 8 日)● 主题专家采访者 - Facebook Connectivity 的 Lumen 光通信纪录片(2020 年 12 月)● 宾夕法尼亚大学 Apogee K-12 女子电气工程项目职业小组成员(2020 年夏季)● 达特茅斯工程物理空间等离子体研讨会发言人(2020 年 1 月);从太空到地球:低地球轨道通信系统格局(2020 年 1 月)● 卫星 2020:小组主持人 – 未来月球经济:开采新资源 – 因 COVID 取消● 麻省理工学院 AeroAstro 研究生女性职业讨论研讨会(2019 年 10 月)● 女性航空航天研讨会小组成员:开始教师生涯(2019 年 5 月)● NASA JPL 未来空间辐射保障(2019 年 6 月);吸引和留住下一代空间辐射科学家和工程师● NCSU 机械和航空航天工程毕业典礼演讲者(2018 年 5 月)● NCSU 机械和航空航天工程特别讲座(2018 年)● 联合国妇女性别平等和主流化 (GEM) 女性互联网:挑战还是机遇?主旨小组成员(2017 年 3 月)● 卫星 2017 会议 – SGx:导师的重要性 ● 麻省理工学院航空航天女性午餐演讲系列 - OneWeb 通信系统(2017 年 2 月) ● 与联合国训练与研究中心联合举办的 2015 年国际电信联盟世界无线电大会 (WRC) 主题演讲者“关于在无线电通信谈判中赋予女性权力的女性领导力研讨会 - 关于女性在技术领域领导力的小组讨论” ● 日内瓦欧洲航空航天女性 - 太空创业(2015 年 3 月)
佐治亚理工学院,美国佐治亚州亚特兰大 博士后 2014 年 2 月 化学和生物化学/生物医学工程 A. 个人陈述 我的长期研究目标是了解凝血机制并开发新疗法,以增强人体的天然凝血和随后的愈合过程。我的博士和博士后培训为我提供了凝血、生物材料设计、纤维蛋白力学以及纤维化和伤口愈合中的细胞机械转导机制方面的实验和理论知识,从而为追求我的长期研究目标奠定了坚实的基础。我们小组的主要研究重点是开发参与自然凝血级联以促进止血和增强愈合效果的血小板模拟材料。我在评估纤维蛋白聚合和血凝块结构以及评估各种啮齿动物损伤和出血模型以及凝血病模型中的体内凝血方面具有丰富的专业知识。我也有评估猪创伤模型中出血的经验。我团队最近的努力包括开发抗菌纳米金属微凝胶复合片状颗粒,用于止血、抗感染和改善愈合效果。我还对我们研究成果的止血技术的商业化产生了浓厚的兴趣,尤其是我们的片状颗粒技术。为此,我们与北卡罗来纳州立大学技术商业化和新企业办公室合作,成立了 Selsym Biotech, Inc.,这是一家早期生物技术公司,旨在开发用于治疗创伤后出血的新型止血材料。相关出版物如下:
Mototaka Arakawa,东北大学 Mike Averkiou,华盛顿大学 [轨道负责人:MCA] Kenneth Bader,芝加哥大学 Carolyn Bayer,杜兰大学 Muyinatu Bell,约翰霍普金斯大学 Mark Borden,科罗拉多大学博尔德分校 [轨道负责人:MTN] Ayache Bouakaz,法国国家健康与医学研究院 Lori Bridal,索邦大学法国国家科学研究院 Matthew Bruce,华盛顿大学 Ewen Carcreff,TPAC Stefan Catheline,法国国家健康与医学研究院,LabTAU Jin Ho Chang,DGIST Hong Chen,华盛顿大学圣路易斯分校 Shigao Chen,梅奥诊所 Parag Chitnis,乔治梅森大学 [轨道负责人:MPA] Magnus Cinthio,隆德大学 Guy Cloutier,蒙特利尔大学 Olivie Couture,索邦大学法国国家科学研究院 [轨道负责人:MSR] Yaoyao Cui,苏州生物医学工程与技术研究所 Jeremy Dahl,斯坦福大学 Paul Dayton,北卡罗来纳大学/北卡罗来纳州立大学 Chris de Korte,拉德堡德大学医学中心 [轨道负责人:MEL] Libertario Demi,特伦托大学 [轨道负责人:MIS] Stefanie Dencks,波鸿大学 Cheri Deng,密歇根大学,Marvin Doyley,罗切斯特大学 Yonina Eldar,魏茨曼科学研究所 Stanislav Emelianov,佐治亚理工学院和埃默里大学医学院 Lin Fanglue,联影 Mostafa Fatemi,梅奥诊所 Brian Fowlkes,密歇根大学 Steven Freear,利兹大学 Caterina Gallippi,北卡罗来纳大学 Fei Gao,混合成像系统实验室 Damien Garcia,法国国家健康与医学研究院 Aiguo Han,弗吉尼亚理工大学,弗吉尼亚州布莱克斯堡 Hideyuki Hasegawa,富山大学 Chih-Chung Huang,国立成功大学 Safeer Hyder,西门子医疗 [轨道负责人:MTN] Tali Ilovitsh,特拉维夫大学 Kazuyo Ito,东京农业大学科技 三星美国研究中心 George Kapodistrias
会议1A:全体会议I会议椅:Xiuling Li和Luke Mawst,星期一,星期一,5月13日,2024年5月13日,凡尔赛塔,诺曼底舞厅2楼1 8:15 AM开幕词上午8:30 AM *1A.1 ALN -MOVPE ZLATKO ZLATKO SITAR; NCSU,美国单晶铝氮化铝的直接带隙为6.1 eV,还带来了实现深紫外光电子,极端RF和功率设备的技术机会,此外还可以进行量子相互作用。由于ALN底物实际上没有位错,可以将Movpe同型的表面形态从2D-核的控制到阶梯流增长,甚至逐层生长。生长过程通过全包表面动力学框架进行定量描述,该框架连接输入蒸气过饱和,表面过饱和,表面扩散长度和底物不良方向角度。表面特征的管理对于三元合金和均匀掺杂的生长至关重要。从历史上看,ALN的电导率非常有限,大概是由于DX - 过渡形成受体状态和随后的自我补偿,这对可实现的自由载体浓度施加了严重的上限。然而,最近的结果表明,该过渡代表了从浅层到深层供体状态的平衡热力学转变,该状态可以动力学控制。iii-V复合半导体现在通过各种方式与基于SI的电子设备集成了电信和数据通信的光纤网络中,以扩展集成系统的性能和功能。这些事态发展不仅具有强大的UV光电设备,而且还采用了近乎理想的基于ALN的Schottky二极管,支持高达3 ka/cm 2的电流,并且稳定的操作高达700°C,以高达700°C,证明了ALN作为极端环境电源设备的平台。上午9:15 *1A.2在SOI上集成III-V主动设备的新范式 - 沿左侧选择性Movpe Kei May Lau;香港科学技术大学,香港高性能高频和光子设备由复合半导体主导,复合半导体具有先天波长的灵活性,并可以促进电子的高速运输,并结合了异性结构。除了速度和带宽优势外,通过光子而不是电子发送数据可能会更多的能量