•2025年1月24日,星期五:卡文迪许校友聚会,我们很高兴欢迎您回到“卡文迪什2”。这个特别的团聚将提供与校友重新建立联系的机会,并反思您帮助塑造的Cavendish研究的遗产。对过去50年来拥有几代物理学家的旧建筑说“再见”也将是一个凄美的机会。请注意您的电子启示很快就会出现。•2025年5月:雷·杜比中心(Ray Dolby Center)的公开开放将举行正式仪式,以纪念我们最先进的研究机构雷·杜比中心(Ray Dolby Center)的开放。此事件将承认杜比家族的慷慨大方,并强调慈善事业在大规模推进科学研究中所扮演的关键角色。•2025年6月:为期两天的卡文迪许科学节(Cavendish Science Festival)结束了我们的庆祝活动,我们将举办一个不容错过的为期两天的节日,其中包含学生演讲,科学讨论,现场实验甚至艺术表演。这个节日将是我们共同成就的充满活力的庆祝活动,并展望将定义我们未来的开创性研究。
不可或缺的信息 Laboratoire d'accueil : Institut Galien Paris-Saclay (IGPS) CNRS UMR8612 Adresse complète du lieu du stage : Eq. MULTIPHASE - 药学多尺度物理化学,巴黎萨克雷大学,HM1 楼,17 Avenue des Sciences,91400 ORSAY 负责人姓名:Angelina ANGELOVA 博士 电子邮箱:angelina.angelova@universite-paris-saclay.fr 上课时间:2025 年 1 月 20 日 - 7 月 18 日 主题名称:液晶脂质纳米粒子中的控制药物释放用于神经保护 - 科学背景 除其他神经退行性疾病外,阿尔茨海默病和帕金森病还给全球约 10 亿人带来医疗和社会经济负担,每年导致 680 万人死亡。这些疾病的特征是神经元的逐渐损失导致认知、感觉、行为和运动神经系统功能障碍。氧化应激会导致活性氧 (ROS) 的产生和自由基的形成,这是这些疾病的共同特征。这可能导致神经退化,并可能导致中枢神经系统斑块的形成。具有内部液晶组织的脂质基纳米颗粒 (LNP) 是一种新的药物输送策略,可调节细胞和组织中的 ROS 水平,从而实现神经保护和神经再生。溶致性脂质基纳米颗粒(立方体、六角体和脂质体)是抗氧化剂化合物输送的理想选择,因为它们的结构有利于增强包封效果和对活性药物成分的包封。立方体、脂质体和六角体类型的纳米载体可以提高药物的生物利用度并保护不稳定的药物分子,这些分子可以是亲水性或疏水性物质。在具有神经保护特性的其他植物化学物质中,槲皮素是一种溶解度低的多功能化合物,需要输送载体才能到达目标作用位点。液晶脂质纳米颗粒 (LCNP) 的控制释放是纳米医学研究的一个新兴领域。目前正在扩展实验以提供数据,这些数据可用于对此类受控药物输送系统中的药物释放进行动力学建模(例如,使用零级模型、一级模型、Higuchi、Korsmeyer-Peppas、Hixson-Crowell、Baker-Lonsdale、Weibull 或 Hopfenberg 模型)。
奖学金名额竞争非常激烈,尤其是对于国际学生来说,申请人数远远超过奖学金名额。如果您无法获得全额资助的奖学金,大学将要求您提供在整个课程期间有足够的经济支持的证据,然后才能确认录取。学生可以通过在学院或系里教授实践或示例课程来补充他们的经济支持,但所获得的金额不足以获得全额支持,也不能用于满足大学的财务状况。
COGNITIONIS - Cientific journal ISSN: 2595-8801 Originals received: 08/30/2024 Acceptance for publication: 09/30/2024 DOI: https://doi.org/10.38087/2595.8801.509 Organization: Interinstitutional Scientific Committee Chief Editor: Gabriel César Dias Lopes Assessment: Double Blind Review by Seer/OJS
这项研究调查了由Tectona Grandis制成的天然染料提取物和银纳米颗粒的效果,可以防止在酸性环境中腐蚀碳钢。这些纳米颗粒在420纳米的波长下显示为深褐色,并吸收了最强的光。分析证实了官能团的存在:O-H,C = O,C = C和纳米颗粒中的N-Hb。用扫描电子显微镜检查显示纳米颗粒主要是球形或椭圆形。证实了银的存在,并使用XRD分析分析了其晶体结构。使用氮吸附技术进一步测试表明纳米颗粒是介孔的。染料和纳米颗粒都抑制了酸性溶液中低碳钢的腐蚀。较高的抑制剂浓度可提供更大的保护,以防止腐蚀。但是,这种保护在较高的温度下削弱了。抑制剂的存在提高了腐蚀所需的活化能。腐蚀过程是一个吸热过程。此外,熵变化表明在抑制期间在金属表面上的排列更加有序。研究表明,纳米颗粒是由提取物形成的。纳米颗粒在暴露于抑制剂后对钢表面的SEM/EDX研究在抑制腐蚀方面的表现优于Die提取物。
全球摘要,多个生态系统服务越来越成为可持续森林管理中的重要议程。但是,尚不清楚哪种森林管理实践将导致最佳的生态系统服务促进可持续性。这项研究旨在确定实施稀疏时间表和30岁的轮换年龄是否对坦桑尼亚的生态系统服务和柚木摊位的经济利益的提供有影响。碳量化和成本效益分析方法用于研究在五种情况下木材生产和碳固存的气候和经济利益,在五个情况下,三个稀疏时间表和30岁旋转年龄是基线。从168个有目的选择的半径圆图9.78 m的圆图中收集了数据,该图在9个稀薄的支架中系统地分布。稀薄的林分,其强度分别为50%,50%和25%。的结果表明,从基线降低33.4%的旋转年龄,同时保持三个稀疏时间表最大化的气候和木材生产和碳存储目标的经济利益提高了181.5%。首选的稀疏时间表和旋转年龄分别具有821 m 3 /ha和41.3 t /ha的木材固换。建议将柚木森林种植园用于木材生产和碳固存的综合目标。关键字:碳固存;生态系统服务;净现值;简化时间表简介
摘要 人工智能与制药领域的交叉代表着一场根本性的变革,通过提高治疗方式的精确度,为加速药物设计和开发时间表提供了新的可能性。我们专注于这两个领域的融合,从战略角度出发,通过克服传统配方方法引发的挑战,挖掘出有潜力的精准候选药物。我们的目标是彻底分析人工智能的各种应用,从其对目标识别的重大贡献到其对临床试验优化的影响的认证。作为一本智力指南,本系统评价引导读者探索人工智能与制药科学合作的未知领域。通过从各种研究和方法中获取所需的信息,我们的系统评价不仅致力于对人工智能的影响进行回顾性分析,而且还致力于提供关于其变革可能性的前瞻性视角。 关键词:人工智能、药物发现、机器学习。国际药品质量保证杂志 (2024); DOI:10.25258/ijpqa.15.3.08 如何引用本文:Sahoo DK、Sarangi RR、Nayak SK、Rajeshwar V、Sayeed M。发现新视野:人工智能在药物发现和开发中的应用系统评价。国际药品质量保证杂志。2024;15(3):1151-1157。支持来源:无。利益冲突:无
1 Institute of Solid State Physics, Technical University Berlin, Hardenbergstraße 36, 10623 Berlin, Germany 2 Department of Optics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-730 Wroclaw, Poland 3 State Key Laboratory for Superlattice and Microstructures, Institute of Semiconductors, Chinese Academy中国北京100083科学,北京4材料科学与光电工程中心,中国科学院,北京大学100049,中国100049,中国5个实验物理学系,弗罗克劳夫科学技术系,Wybrze问StaniSławaWyspiańskiego27丹麦,2800,公斤。Lyngby,丹麦 *通讯作者:lucas.rickert@tu-berlin.de,zcniu@semi.ac.cn,tobias.heindel@tu-berlin.deLyngby,丹麦 *通讯作者:lucas.rickert@tu-berlin.de,zcniu@semi.ac.cn,tobias.heindel@tu-berlin.de
能源安全与网络安全之间不可或缺的联系 作者:Marlen Rein 勒索软件、网络间谍、网络钓鱼和 DDoS 攻击只是可能损害整个能源系统并造成重大社会混乱的众多可能性中的几个例子。随着许多国家走上绿色和数字化转型的道路(通常称为双重转型),能源部门也在经历快速而大规模的数字化。这与地缘政治紧张局势的加剧一起意味着能源安全与网络安全之间的相互联系正在不断加强。本文重点介绍了受网络风险影响的一些能源安全关键领域,以表明需要从整体角度来确保北约国家的能源安全。能源安全有多种概念,但本文采用了北约能源安全卓越中心 (ENSEC COE) 使用的能源安全定义和标准,该中心将能源安全称为“稳定可靠地供应所需的能源形式和数量,从而实现北约的能力、作战效率和弹性。”本文围绕这一定义的关键术语,即稳定可靠的供应、北约的能力、作战效能和弹性展开,重点介绍了更广泛的军民框架中与这些方面相关的一些主要网络威胁。关于能源部门易受网络威胁的脆弱性,有大量令人震惊的信息;例如,国际能源署、北约和欧盟委员会已警告能源部门网络攻击的增加,金融时报提到针对工业目标的网络攻击数量不断增加,仅举几例。此外,许多国家当局也强调了日益增加的安全风险。表 1 显示了近年来不同行业(包括天然气和电力基础设施)网络攻击趋势的增长。对关键能源基础设施构成的风险尤其令人担忧,因为它们可能造成严重破坏并削弱能源的稳定可靠供应,除了可能对经济和声誉造成负面影响之外。乌克兰的能源部门是最近几次网络攻击最突出的目标之一。不过,全球还有许多其他例子和事件,包括许多北约成员国。能源行业与任何其他关键行业一样,可能容易受到不同类型的风险的影响,例如勒索软件、DDoS 攻击、数据相关威胁、恶意软件、社会工程或供应链攻击。网络威胁可能会在短期或长期内对稳定可靠的能源供应产生负面影响,具体取决于攻击的难度和该行业的准备程度。能源行业的目标可能非常多样化。针对美国最大成品油管道 Colonial Pipeline 的勒索软件攻击是最近最著名的例子之一,造成了重大破坏性影响。CSIS 编制的网络事件列表中重点介绍的其他一些案例包括,针对意大利能源机构 GSE 的网络攻击,攻击方式是入侵服务器并阻止系统访问;针对立陶宛能源集团 Ignitis 的 DDoS 攻击;针对不同私营公司的网络间谍活动,
谷物尚未被观察到,因为经典的R-基因是易于克服的。的确,病原体种群的大量基因组变异性可能是由可转座元素,高突变和重组率以及有丝质和梅西斯期间不正确的染色体分离引起的,共同导致迅速发展的新毒力表型感染了以前的抵抗植物(Mouller et and and and and and and 2017)。 如今,人们对植物发作过程中真菌和细菌病原体采用的分子机制已被充分了解。 植物表现出对大多数微生物的免疫力,由不同的耐药层介导。 与病原体相关的分子模式(PAMP)接触时,植物免疫系统的第一层被植物模式识别受体(PRR)激活,这对于病原体至关重要,因此可以使结构性不变的分子(例如壳聚糖和分支的β-葡聚糖luculucan fungulucan fungulucan fungal fungal fungal fungal fungal fungal fungal fungal fungal fingal fungals fragments fragments fragments fragments或capterial flagellin of to nisty Inders of and pamp)激活。 由于pAMP识别而建立了PAMP触发的免疫力(PTI)。 然而,成功的病原体已经开发出了通过修饰细胞表面和pAMP暴露和/或通过分泌效应子来避免pAMP识别的机制(Oliveiragarcia and Valent 2015)。 对抗药性遗传学的分子理解的显着突破是Harold H. Flor的X射线诱变实验与异源性亚麻生锈菌菌孢子(Flor 1958),最终引起了基因基因假设。 这一假设表明微生物气相(AVR-)基因产物被植物识别2017)。如今,人们对植物发作过程中真菌和细菌病原体采用的分子机制已被充分了解。植物表现出对大多数微生物的免疫力,由不同的耐药层介导。与病原体相关的分子模式(PAMP)接触时,植物免疫系统的第一层被植物模式识别受体(PRR)激活,这对于病原体至关重要,因此可以使结构性不变的分子(例如壳聚糖和分支的β-葡聚糖luculucan fungulucan fungulucan fungal fungal fungal fungal fungal fungal fungal fungal fungal fingal fungals fragments fragments fragments fragments或capterial flagellin of to nisty Inders of and pamp)激活。由于pAMP识别而建立了PAMP触发的免疫力(PTI)。成功的病原体已经开发出了通过修饰细胞表面和pAMP暴露和/或通过分泌效应子来避免pAMP识别的机制(Oliveiragarcia and Valent 2015)。对抗药性遗传学的分子理解的显着突破是Harold H. Flor的X射线诱变实验与异源性亚麻生锈菌菌孢子(Flor 1958),最终引起了基因基因假设。这一假设表明微生物气相(AVR-)基因产物被植物识别