动机:模块化响应分析(MRA)是从turg turgation数据中推断生物网络的良好方法。经典,MRA需要线性系统的解决方案,结果对数据和扰动强度中的噪声敏感。由于噪声传播,对10个或更多节点网络的应用很难。结果:我们提出了将MRA作为多线性回归问题的新表述。这使得能够在更大,过度确定且更稳定的方程式系统中整合所有重复和潜在的扰动。可以获得更相关的网络参数的置信区间,我们显示了大小高达1000的网络的竞争性能。以已知零边缘形式的先验知识整合进一步改善了这些结果。可用性和实现:用于获得呈现结果的R代码可从GitHub获得:https:// github.com/j-p-borg/bioinformatics
对微生物浮游生物生物多样性的评估和监测对于获得对海洋环境的健康状况的良好评估至关重要。PETRI-MED项目通过制定新的策略来根据卫星观测来监测微生物浮游生物群落组成和功能来解决这一必要。培养皿将专注于地中海作为具有深远的生态和文化重要性的全球生物多样性热点。Petri-Med项目的主要目标包括(i)基于创新的卫星指标的开发,以确定微生物浮游生物社区的生物多样性状态和趋势,(ii)鉴定微生物浮游生物分布和多样性的微生物浮游生物分布和(iii)的自然连接式的生物群体及其多样性范围的范围,包括生物群体的自然连接,包括生物群的自然连接,包括生物范围。通过关注海洋健康和/或生物地球化学状态的关键指标。这样做,培养皿将主要依赖卫星光学放射测量(即海洋颜色,OC),从而利用最新OC欧洲数据集的时间和空间特征(即,由copernicus sentinel-3和欧洲航天机构的OC-CCI)具有偏僻的隔离式观察(即copernicus Sentinel-3和欧洲航天机构),并具有偏僻的海拔(AS-Art Space)。电流建模和基因组技术。为了实现合并遥感,生物地球化学/物理建模以及原位测量测量的雄心勃勃的目标,Petri-Med将依靠人工智能(AI)。PETRI-MED的总体目标是使决策者和利益相关者获得必要的知识,以根据定量的实时指标对生态系统管理采用优先级别方法。这包括保护和实施保护策略和政策,以保护生物多样性,量化各个层面实施的行动的影响,并为海洋保护区(MPA)(MPA),关键生物多样性领域以及生态或生物学上重要的海洋领域提供系统的,事实支持的事实支持。此外,彼得索(Petrimed)试图评估MPA管理对气候变化的可行性,从而确保在面对环境挑战时为保护海洋生态系统的保护策略。总而言之,PETRI-MED代表了一种全面而创新的方法,可以促进我们对地中海中微生物浮游生物生物多样性的理解。通过卫星技术,法学技术和AI的整合,该项目为有效的海洋生态系统管理和保护策略提供了宝贵的见解和工具。
本研究介绍了配备直接太阳能(DSF)的房间的案例研究,以预测真正的热和能量行为。dsf操作是由热惯性的,这是一种复杂的现象,其相对影响被证明受到许多因素的影响,包括太阳辐射和板的热绝缘材料。但是,当前的物理模型并不能很好地显示这种关系。本文将通过采用切换线性模型来证明这种关系可以用数值模型正式描述。实际上,文献中开发的仿真模型以非常简单的方法表示,不能用于对DSF的热作战的详细分析。本研究旨在减少知识差距并解决限制,例如(i)对直接太阳能地板的热行为的现实解释,(ii)以快速而简单的方式通过热惯性来确定热量惯性的加热模式,并且(iii)通过热惯性估算热量消耗的热量延期,可以延迟估计能量的能量。开关模型已检测到直接太阳能地板的三种操作模式,其中一个对应于热惯性加热时刻。该模型还可以评估热惯性的持续时间和能量。因此,在1110小时的测试期内估计为310小时和18.6kWh,平均每天3.58小时。
光学主动电信发射器的最新演示表明,硅是固态量子光子平台的引人注目的候选者。尤其是,在常规的热退火后,已在富含碳的硅中显示了称为G中心的缺陷的制造。然而,这些发射器在晶圆尺度上的高收益受控制造仍然需要鉴定合适的热力学途径,从而在离子植入后激活其激活。在这里,我们证明了纳秒脉冲激光退火时高纯硅底物中G中心的激活。该提出的方法通过供应短的非平稳脉冲来实现G中心的非侵入性,局部激活,从而克服了与发射器的结构性亚元能力相关的常规快速热退火的局限性。有限元的分析突出了该技术的强大非平稳性,提供了与常规更长的热处理相对于常规的较长热处理的根本不同的缺陷工程能力,为嵌入在集成光子电路和波导的集成光子电路和波导中的发射器的直接和受控制造铺平了道路。
在全球范围内,微塑性污染对海洋生物群具有许多负面影响,这加剧了其他形式的全球人为障碍的影响。越来越多的证据表明,微塑料(MPS)不仅通过摄入造成物理损害,而且还通过浸出吸收和吸附化学物质来充当危险化合物的媒介。对塑料污染作用的研究在很大程度上假定物种均匀反应,同时忽略了种内多样性(即单个物种内的变化)。我们研究了源自工厂新鲜(处女)和滩开的微塑料对地中海贻贝Mytilus Galloprovincialis的两个遗传谱系的行为反应的塑料浸出物的影响。通过实验室行为实验,我们发现,在暴露于海滩微塑料(海滩MPL)的渗出液中,大西洋标本的移动率明显少于地中海个体,就(i)(i)通过移动和(ii)净距离响应的个体比例(i)净距离和距离。相比之下,在暴露于Virgin Micropolpics(Virgin MPLS)的MPL时,在成年人或新兵的行为中未观察到显着的种内差异。此外,在浓度增加(木炭过滤海水中的10-5 m至10-3 m)以增加浓度的三个氨基酸(L-半胱氨酸,脯氨酸和L-达糖碱)的提示接收,通过使用Mussel触及海滩MPLS或对照海水进行的电生理学分析测试了在木炭过滤的海水中接受提示。我们发现,对10-3 m L-半胱氨酸的反应(无论处理如何)和10-4 m L-半胱氨酸(在暴露于海滩MPLS的贻贝中)和10-3 M脯氨酸(在暴露于海滩MPLS的贻贝中)和10-5 m l- L-L- lel- L-L-丁嘧啶的反应明显差异。我们的研究表明,海贻贝的种内变异可能会引起对塑料污染的不同反应,这可能是由于谱系之间的局部适应和生理变异而引发的。我们的工作强调了评估种内变异的影响的重要性,尤其是在环境前哨物种中,因为这种多样性水平可以调节对塑料污染的反应。
在过去的二十年中,Quantum Internet [1]和量子计算的实施已经有很大的推动。已经研究了这些量子技术的不同构件:量子记忆和中继器[2,3],单光子源[4],量子门和接口[5]。接口所有这些组件的研究最多的系统之一是光子[6]:它们可以在室温下进行操作而无需折叠,可以通过具有最小的损失的标准光学纤维网络传输,并提供了许多自由度来编码信息,例如。极化,频率或相位。选择编码方案时,可以优先使用高维方案,因为它具有许多优势,例如量子密钥分布和更高的信息率的更高安全性[7 - 10]。编码高维量子信息的最健壮的方案之一是时间模式,因为它们可抵抗纤维中的分散,并且自然提供了高维基集。在此方案中,信息是按照红外波长的时间自由度来编码的,然后通过FILER网络路由到不同的设备或用户。要在这些时间模式中读取量子信息,一个量子接口可以单独解决输入信号的每个时间模式,即以单模操作为特征,然后是必要的。近年来,量子脉冲门(QPG)[11]的上升是一种理想的单模界面,以操纵光的光模式。但是,终极多亏了可重新发现的单模传输函数,QPG可以从输入信号中选择单个时间模式;通过总和频率产生(SFG)过程将所选模式上转换为较短的波长,并且信号正交的部分与传输函数的部分保持不转化。以这种方式,QPG设备自然满足了量子接口的两个独立关键要求:它允许在不同波长下运行的量子光学设备进行通信,并利用时间模式来进行量子通信,计算和计量学。QPG的单模操作已经成功地用于许多应用程序[5],例如在量子状态层析成像[12]中,光谱带宽压缩到界面不同的量子系统[13]和量子计量学[14,15]中。为了进一步开发这些演示,以对日常应用,效率和纯粹的单模,其中包括空间和时间,操作至关重要。
基于评估指数构建的原则以及区域经济可持续发展的当前状况,确定了区域经济可持续发展水平的评估指数体系。距离空间重量矩阵用于定义评估指标的重量系数,然后将其重量系数取代为计算MORAN指数的公式,以衡量区域经济可持续发展水平的MORAN指数。在对区域经济可持续发展的空间自相关分析后,具有固定效果的空间面板模型由Hausman测试确定,并将模型应用于经验分析区域经济可持续发展。数据表明,行业增加的价值会显着影响5%水平的积极方向的区域经济的可持续发展。此外,所有指标的值都通过鲁棒性测试。最后,我们提出了相应的优化建议,以改善区域经济的可持续发展路径。
认知神经科学的进步通常伴随着我们用来发现大脑功能新方面的方法的复杂性。最近,许多研究已经开始使用大型特征集来预测和解释大脑活动模式。在此范式中,至关重要的重要性是映射模型,它定义了特征和神经数据之间可能关系的空间。直到最近,大多数编码和解码研究都使用了线性映射模型。但是,一些研究人员认为,线性映射的空间过于限制,并主张使用更灵活的非线性映射模型。在这里,我们在三个总体目标的背景下讨论了映射模型的选择:预测准确性,可解释性和生物学合理性。我们表明,与流行的直觉相反,这些目标不会清晰地映射到线性/非线性鸿沟上。此外,我们认为,我们应该旨在估计这些模型的复杂性,而不是将映射模型视为线性或非线性,而不是将映射模型视为线性或非线性。我们表明,在大多数情况下,复杂性可更准确地反映了各种研究目标所施加的限制,并概述了几个可用于有效评估映射模型的复杂度指标。
a School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Street, Harbin 150001, China b Laboratoire Charles Coulomb (L2C) UMR 5221 CNRS-Université de Montpellier, F- 34095 Montpellier, France c Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China d School of Energy and山东大学的动力工程,Qingdao 266237,中国E Institut Universitaire de France,1 Rue Descartes,F-75231 Paris Cedex 05,法国