人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
从理查德·费曼教授提出量子计算机的设计到现在已经过去了 40 多年,而它距离成为现实已经越来越近,并且越来越接近于应用于解决数字时代传统技术无法解决的实际、复杂或无法解决的问题。尽管我们无疑沉浸在期望的泡沫中,但事实上这项技术的潜力在科学、工业和社会的多个领域都具有非常重要的意义。不可否认的是,就像在生物信息学领域以及更重要的人工智能领域(特别是在机器学习和深度学习领域)发生的那样,很明显存在这样的风险:技术进步的速度将远远超过为培养未来的专业人员而进行的教育工作,这可能会导致那些必须创建、使用、操作、管理或维护基于量子技术的系统的专家在技能和知识方面出现差距。
2024 2025 十二月 一月 29 30 31 1 2 3 4 5 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
光频梳(OFC)是一种基于激光的技术,具有转化的计量学,可以以未经先验的精度实现时间和频率测量。超出了其最初的目的,OFC已在基本科学和新兴技术的各个领域采用,例如Au sosos驾驶和无线通信。然而,目前以高度重复速率产生低噪声OFC来源的挑战,具有较高的光学带宽阻碍了其全部潜力。为了应对这些挑战,非线性光纤中的超智能(SC)生成是一种有吸引力的方法,因为它可以在相对较低的泵功率下提供大带宽,但以噪声扩增为代价。本论文探讨了产生基于低噪声SC的OFC来源的新方法,以满足这些新型范围的不断增长的需求。第一个提出的解决方案是一种混合纤维,结合了两种SC生成制度的最佳品质。使用此纤维,可以将超低噪声纤维SC覆盖,覆盖930–2130 nm范围,相位相干性接近统一,频谱分辨出相对强度噪声(RIN)低至0。05%,平均0。01%在750 nm的带宽上,接近接近泵激光噪声的理论极限。这项工作的第二个重要结果是开发了一种新的数值方法,能够模拟在非线性纤维中传播的整个超快脉冲列车并研究其噪声性能的演变。最后,引入了空心核纤维,是达到新的SC制度(包括深紫外线和TW峰值功率)的一种有希望的方法。We use this model to corroborate and explain measurements of unprecedented low noise observed on a dual-comb SC source, including shot-noise-limited SC generation and up to 20 dB of RIN suppression.
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
摘要:近年来,中国已经发掘了许多文化文物,但其保存状态并不乐观。根本原因是文化遗物已被埋葬在地下近一千年,而挖掘后的温度,湿度,光辐射和空气条件等突然的环境变化破坏了以前形成的平衡,这自然会对文化文物产生巨大影响。本文主要研究中国文化遗物的埋藏环境与发掘的保存状况之间的关系,强调了两者之间的重要联系,并找到了一些因素的文化文化遗物状况的某些因素。通过案例分析,比较分析和其他研究方法,本文发现,无论掩埋环境是好是坏,掩埋环境的变化以及出土环境的突然变化是文化文物保存状况的核心影响。换句话说,平衡的破坏是对文化文物的最大破坏,
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。