背景:本文回顾了近期采用人工智能/机器学习 (AI/ML) 方法通过自动图像分析对头颈癌 (HNC) 进行诊断评估的文献。方法:使用 MEDLINE (通过 OVID、EMBASE 和 Google Scholar) 进行电子数据库搜索,以检索使用 AI/ML 对 HNC 进行诊断评估的文章 (2009 – 2020 年)。对所使用的 AI/ML 方法或成像方式没有任何限制。结果:共找到 32 篇文章。HNC 部位包括口腔 (n = 16)、鼻咽 (n = 3)、口咽 (n = 3)、喉 (n = 2)、唾液腺 (n = 2)、鼻窦 (n = 1),其中五项研究研究了多个部位。成像方式包括组织学(n = 9)、放射学(n = 8)、高光谱(n = 6)、内窥镜/临床(n = 5)、红外热(n = 1)和光学(n = 1)。两项研究使用了临床病理学/基因组数据。22 项研究(69%)采用了传统 ML 方法,8 项研究(25%)采用了深度学习 (DL),2 项研究(6%)采用了这两种方法的组合。结论:越来越多的研究正在探索 AI/ML 在通过各种成像方式辅助 HNC 检测中的作用。这些方法可以达到高度准确度,甚至超过人类在数据预测方面的判断能力。需要进行大规模多中心前瞻性研究来帮助部署到临床实践中。
1 MRC 综合流行病学部,人口健康科学系,布里斯托尔医学院,布里斯托尔大学,英国布里斯托尔,2 布里斯托尔牙科医院和学院,布里斯托尔大学,英国布里斯托尔,3 布里斯托尔医学院,布里斯托尔大学,英国布里斯托尔,4 布里斯托尔大学医院和韦斯顿 NHS 基金会信托国家健康研究所布里斯托尔生物医学研究中心,布里斯托尔大学,英国布里斯托尔,5 埃克塞特大学医学院,RILD 大楼,RD&E 医院,埃克塞特,英国,6 世界卫生组织遗传流行病学组,国际癌症研究机构,法国里昂,7 意大利罗马天主教圣心大学生命科学与公共卫生系卫生科,8 妇女儿童健康和公共卫生部,公共卫生领域,基金会意大利罗马 A. Gemelli IRCCS 大学综合医院,9 美国北卡罗来纳州教堂山北卡罗来纳大学吉林斯全球公共卫生学院流行病学系,10 美国宾夕法尼亚州匹兹堡匹兹堡大学公共卫生研究生院和 UPMC Hillman 癌症中心人类遗传学系,11 加拿大多伦多西奈医疗系统 Lunenfeld-Tanenbaum 研究所 Prosserman 人口健康研究中心,12 加拿大多伦多多伦多大学 Dalla Lana 公共卫生学院,13 加拿大多伦多玛格丽特公主癌症中心,14 英国布里斯托尔布里斯托尔大学细胞与分子医学学院,15 巴西圣保罗圣何塞杜里奥普雷图医学院,16 以色列阿尔伯特医院阿尔伯特爱因斯坦研究与教育研究所爱因斯坦,巴西圣保罗,17 荷兰马斯特里赫特大学医学中心 GROW 研究所耳鼻咽喉科和头颈外科系
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。
头部和颈部鳞状细胞癌(HNSCC)是影响人类健康的主要恶性肿瘤之一,主要是由于诊断延迟和侵入性高。Extracellular vehicles (EVs) are membranous vesicles released by cells into the extracellular matrix that carry important signalling molecules and stably and widely exist in various body fluids, such as plasma, saliva, cerebrospinal fluid, breast milk, urine, semen, lymphatic fluid, synovial fluid, amniotic fluid, and sputum.evs传输几乎所有类型的生物活性分子(DNA,mRNA,microRNA(miRNA),蛋白质,代谢物,甚至药理化合物)。这些“货物”可以对受体细胞作用,重塑周围的微环境并改变遥远的靶标,最终影响其生物学行为。对电动汽车的广泛探索加深了我们对HNSCC生物学的全面理解。在这篇综述中,我们不仅总结了HNSCC衍生的EV对肿瘤微环境的影响,而且还描述了微环境衍生的EV在HNSCC中的作用,并讨论了肿瘤和微环境之间的“相互对话”如何介导生长,转移性,远离抗药性,免疫,抗药性,抗药性,抗药性,抗药性,抗药性,抗药性。最后,评估了电动汽车在HNSCC中的临床应用。
每年约有 500,000 例头颈部鳞状细胞癌 (HNSCC) 新病例。放射疗法是口腔鳞状细胞癌 (OSCC) 的重要治疗方法。几十年来,HNSCC 患者的生存率一直很低 (50%),因为 HNSCC 细胞的放射抗性导致放射治疗失败。本研究旨在确定可以增强放射敏感性的 PI3K 抑制剂。结果表明,泛磷酸肌醇 3-激酶 (PI3K) 抑制剂 BKM120 和 I 类 α 特异性 PI3K 抑制剂 BYL719 以剂量依赖性方式降低 OSCC 细胞的生长,但没有降低放射抗性的 OML1-R 细胞的生长。BKM120 或 BYL719 与放射联合治疗对 OSCC 细胞和放射抗性的 OML1-R 细胞具有增强的抑制作用。此外,联合治疗的增强抑制作用在患者来源的 OSCC 细胞中得到证实。 mTOR抑制剂AZD2014与BKM120或AZD2014与BYL719联合放射治疗对放射抗性的OML1-R细胞的抑制作用明显增强,提示PI3K抑制剂是治疗口腔鳞状细胞癌的潜在放射敏感性治疗药物。
1。Vorgia E.,M。Lamprousi,S。Denecke,K。Vogelsang,S。Geibel等,2021年的功能特征和转录组中的中腹细胞系中的中腹细胞系(Lep-Idoptera:noctuidae)。昆虫生物化学。mol。生物。128:103510。https://doi.org/10.1016/j.ibmb.2020.103510 2。Swevers L.,S。Denecke,K。Vogelsang,S。Geibel和J. Vontas,2020年,哺乳动物类器官技术可以应用于昆虫肠道吗?害虫管理。SCI。 77:55–63。 https://doi.org/10.1002/ps.6067 3。 DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。 基因组生物。 Evol。 12:1429–1439。 https://doi.org/10.1093/gbe/evaa153 4。 Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。 proc。 R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。SCI。77:55–63。https://doi.org/10.1002/ps.6067 3。 DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。 基因组生物。 Evol。 12:1429–1439。 https://doi.org/10.1093/gbe/evaa153 4。 Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。 proc。 R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。https://doi.org/10.1002/ps.6067 3。DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。基因组生物。Evol。12:1429–1439。https://doi.org/10.1093/gbe/evaa153 4。Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。proc。R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。R. Soc。B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。B Biol。SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。SCI。287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。农药。生物化学。生理学。167。https://doi.org/10.1016/j.pestbp.2020.1045956。昆虫分子。生物。29:363–372。https://doi.org/10.1111/imb.12640 7。Koidou V.,S。Denecke*,P。Ioannidis,I。Vlatakis,I。Livadaras等,2020年,有效的CRISPR/CAS9介导的基因组介导的基因组编辑。denecke s*。,P。ioannidis*,B。Buer,A。Ilias,V。Douris等,2020年,Nezara Viridula(杂翅目:五翅目:pentatomidae)中表达的转录组和蛋白质组学图,Midgut提出了心苯基植物的分类性,并表明了心齿植物的分类。BMC基因组学21:129。https://doi.org/10.1186/S12864-020-6459-6 8。Riga M.,S。Denecke*,I。Livadaras,S。Geibel,R。Nauen等,2020年,在Nezara viridula中开发有效RNAi,用于杀虫剂靶标。拱门。昆虫生物化学。生理学。103:E21650。 https://doi.org/10.1002/arch.21650 9。 Young H. K.,S。M. Denecke,C。Robin和A. Fournier级,2019年,幼虫暴露于咪二藻中的幼虫会影响果蝇中的成人行为。 J. Evol。 生物。 33:151–164。 https://doi.org/10.1111/jeb.13555 10。 Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮? 昆虫生物化学。 mol。 生物。 103:22–35。 https://doi.org/10.1016/ j.ibmb.2018.10.005 11。 harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。 害虫管理。 SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。103:E21650。https://doi.org/10.1002/arch.21650 9。Young H. K.,S。M. Denecke,C。Robin和A. Fournier级,2019年,幼虫暴露于咪二藻中的幼虫会影响果蝇中的成人行为。J. Evol。 生物。 33:151–164。 https://doi.org/10.1111/jeb.13555 10。 Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮? 昆虫生物化学。 mol。 生物。 103:22–35。 https://doi.org/10.1016/ j.ibmb.2018.10.005 11。 harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。 害虫管理。 SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。J. Evol。生物。33:151–164。https://doi.org/10.1111/jeb.13555 10。Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮?昆虫生物化学。mol。生物。103:22–35。https://doi.org/10.1016/ j.ibmb.2018.10.005 11。harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。害虫管理。SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。SCI。74:1616–1622。https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。https://doi.org/10.1002/ps.4852 12.昆虫生物化学。mol。denecke s。,R。Fusetto和P. Batterham,2017年,使用CRISPR-CAS9敲除果蝇Melanogaster ABC转运蛋白在杀虫剂生物学中的作用。生物。91:1-9。 https://doi.org/10.1016/j.ibmb.2017.09.017 13。 DeNecke S.,R。Fusetto,F。Martelli,A。Giang,P。Battlay等,2017,2017年多个P450和神经元基因的变化,这是对果蝇大众群中对杀虫剂咪二酸的反应。 SCI。 Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.014505191:1-9。https://doi.org/10.1016/j.ibmb.2017.09.017 13。DeNecke S.,R。Fusetto,F。Martelli,A。Giang,P。Battlay等,2017,2017年多个P450和神经元基因的变化,这是对果蝇大众群中对杀虫剂咪二酸的反应。SCI。 Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051SCI。Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051SCI。Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。PLOS ONE 10:E0145051。https://doi.org/10.1371/journal.pone.0145051
摘要。c-间充质-上皮转化 (Met) 是肝细胞生长因子 (HGF) 的跨膜酪氨酸激酶受体。HGF/Met 信号传导刺激多种通路,包括 Ras/丝裂原活化蛋白激酶 (MAPK)、磷脂酰肌醇 3 激酶/蛋白激酶 B 和 Wnt/β-catenin 通路,这些通路在细胞增殖、存活、运动、侵袭和血管生成中发挥重要作用,并促进肿瘤的发展和进展。异常的 HGF/Met 信号传导与几种类型的肿瘤预后不良有关,包括头颈部鳞状细胞癌 (HNSCC)。尽管 HGF/MET 通路和 HGF 和/或 Met 抑制剂已被广泛研究,但它们在肿瘤免疫中的作用仍然不清楚。本综述文章总结了有关 HNSCC 中 HGF/Met 信号传导的研究结果,包括基因和蛋白质改变、生物学功能和患者预后。此外,还讨论了 HGF/Met 在肿瘤免疫中的作用,并从肿瘤免疫的角度阐明了 HGF/Met 表达与 HNSCC 患者预后之间有争议的关联。最后,本综述提出了一种可能提高 Met 治疗 HNSCC 疗效的临床方法,即瘤内注射 Met 抑制剂以降低对免疫细胞募集的抑制作用。然而,需要进一步研究以更好地了解 HGF/Met 通路对肿瘤微环境的影响,并且 HGF 和 Met 抑制剂对肿瘤环境中免疫细胞的影响应成为未来研究的重点。
摘要:听觉过程涉及一系列事件。外耳捕获声音的能量,并通过外耳道进一步传输到中耳。在中耳,声波被转换成鼓膜和听小骨的运动,从而放大压力,使其足以引起耳蜗液的运动。耳蜗内的行波导致内耳毛细胞去极化,进而释放神经递质谷氨酸。从而,螺旋神经节神经元被激活,通过听觉通路将信号传输到初级听觉皮层。这种复杂的机械感觉和生理机制组合涉及许多不同类型的细胞,其功能受许多蛋白质的影响,包括参与离子通道活动、信号转导和转录的蛋白质。在过去 30 年中,超过 150 个基因的致病变异被发现与听力损失有关。听力损失影响着全球超过 4.6 亿人,目前
本研究的目的是确定未来完全可再生能源系统的技术解决方案空间,以满足可持续的生物质需求。在向非化石能源和材料系统过渡的过程中,生物质是一种有吸引力的碳源,以满足非化石系统中对高密度、含碳燃料和原料的需求。然而,广泛的土地使用已经是一个可持续发展的挑战,未来需求的增长有可能超过全球可持续生物质的潜力,根据国际专家的共识,到 2050 年,全球可持续生物质的潜力约为 10-30 GJ/人/年。我们对 8 项关于完全可再生能源系统设计的独立研究中的 16 种情景进行了分析,并综合了 9 种通用系统设计,揭示了电气化和氢能集成对于建立尊重全球生物质限制的完全可再生能源系统的重要性。我们发现,不同的完全可再生能源系统设计的生物质需求范围为 0 GJ/人/年(高度集成、电气化、纯电燃料场景,氢气需求高达 25 GJ/人/年)到 200 GJ/人/年以上(集成度较低、没有电气化或氢气集成的完全生物能源场景)。我们发现,要保持在可持续生物质限度内,需要至少 15 GJ/人/年的高度系统电气化和氢气集成。
获得了与上述基因表达相对应的(德国Sigma Aldrich)。理想稀释比和检索缓冲液在染色之前确定(ITGA-2:1:100,MMP-1:1:1:1:1:1:1:1:1:1:250)。简短地,将组织切片用二甲苯脱蜡,并随着酒精浓度降低而补液。使用柠檬酸盐缓冲液(10 mmol/L,pH 6.0)在微波炉(600 W)中进行热诱导的表位检索后,在室温下使用载玻片,用针对ITGA-2,TEK,TEK,TEK,MMP-1的主要抗体进行1小时。Ultravision LP检测系统(Lab Vision Corporation,Fremont,California)用于根据制造商的建议检测抗体结合。抗体结合位点通过添加3-3-二氨基苯胺颜色褐色。最后,进行了用苏木精三世(Merck,Darmstadt,Germany)对Tis-Sue样品的抗染色。所有载玻片均分配给标记表达式的四类类别之一:0 =负; 1 =弱:在<30%的细胞中染色; 2 =中度:30%至60%的细胞染色;和3:超过60%的细胞中的染色强。采用核心污渍的平均值来确定染色强度。阳性对照是根据制造商的协议进行的。使用Olympus BH-2显微镜(Olympus America,Melville,New York,New York)分析样品。