设备应在非危险区域和基本电磁环境中使用,后者在 EN 61326-1 中定义。避免强烈的机械冲击和振动。避免腐蚀性环境和受灰尘、油雾等严重污染的区域。使仪器远离阳光直射。突然的温度或湿度变化可能会影响传感器的灵敏度。
菊花含量,东亚本地的一种物种众所周知,是耕种的菊花的祖细胞之一,该物种以其观念和药用价值而生长。先前关于菊花的基因组研究在分析该植物谱系时,很大程度上忽略了质体基因组(质体)和线粒体基因组(有丝分裂基因组)的动力学。在这项研究中,我们测序并组装了二倍体和四倍体C的质体和有丝分裂组。芳香。我们使用了来自27种具有质体和有丝分裂组完整序列的数据,以探索细胞器基因组之间序列演化的差异。二倍体和四倍体C中的细胞器基因组的大小和结构通常相似,但四倍体C. indimum和C. indimum var。芳香族在有丝分裂组中包含独特的序列,这些序列还包含先前未描述的开放式阅读框(ORF)。跨菊花有丝分裂组的结构变化很大,但是从质体转移到有丝分裂基因组的序列得到了保存。最后,有丝分裂基因组和质子基因树之间观察到的差异可能是这两个基因组中基因之间序列演化速率差异的结果。总共提出的发现大大扩展了研究菊花细胞器基因组进化的资源,并可能在将来可以应用于保护,育种和基因库。
1。Brown JM,Campbell JP,Beers A等。使用深卷积神经网络在早产性视网膜病变中对疾病的自动诊断。 Jama Ophthalmol。 2018; 136:803–810。 doi:10.1001/jamaophthalmol.2018.1934。 2。 Gulshan V,Peng L,Coramm等。 在视网膜眼底照片中检测糖尿病性视网膜病的深度学习算法的开发和验证。 JAMA。 2016; 316:2402–2410。 doi:10。 1001/jama.2016.17216。 3。 Coyner AS,Swan R,Campbell JP等。 使用深卷积神经网络的预性早产性底面图像质量评估。 眼科视网膜。 2019; 3:444–450。 doi:10.1016/j.oret.2019.01.015。 4。 Rajpurkar P,Irvin J,Zhu K等。 chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。 ARXIV171105225 CS Stat。 2017年11月。http://arxiv.org/abs/1711.05225。 2019年10月23日访问。 5。 Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因? 骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。使用深卷积神经网络在早产性视网膜病变中对疾病的自动诊断。Jama Ophthalmol。2018; 136:803–810。 doi:10.1001/jamaophthalmol.2018.1934。 2。 Gulshan V,Peng L,Coramm等。 在视网膜眼底照片中检测糖尿病性视网膜病的深度学习算法的开发和验证。 JAMA。 2016; 316:2402–2410。 doi:10。 1001/jama.2016.17216。 3。 Coyner AS,Swan R,Campbell JP等。 使用深卷积神经网络的预性早产性底面图像质量评估。 眼科视网膜。 2019; 3:444–450。 doi:10.1016/j.oret.2019.01.015。 4。 Rajpurkar P,Irvin J,Zhu K等。 chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。 ARXIV171105225 CS Stat。 2017年11月。http://arxiv.org/abs/1711.05225。 2019年10月23日访问。 5。 Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因? 骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。2018; 136:803–810。doi:10.1001/jamaophthalmol.2018.1934。2。Gulshan V,Peng L,Coramm等。 在视网膜眼底照片中检测糖尿病性视网膜病的深度学习算法的开发和验证。 JAMA。 2016; 316:2402–2410。 doi:10。 1001/jama.2016.17216。 3。 Coyner AS,Swan R,Campbell JP等。 使用深卷积神经网络的预性早产性底面图像质量评估。 眼科视网膜。 2019; 3:444–450。 doi:10.1016/j.oret.2019.01.015。 4。 Rajpurkar P,Irvin J,Zhu K等。 chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。 ARXIV171105225 CS Stat。 2017年11月。http://arxiv.org/abs/1711.05225。 2019年10月23日访问。 5。 Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因? 骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。Gulshan V,Peng L,Coramm等。在视网膜眼底照片中检测糖尿病性视网膜病的深度学习算法的开发和验证。JAMA。 2016; 316:2402–2410。 doi:10。 1001/jama.2016.17216。 3。 Coyner AS,Swan R,Campbell JP等。 使用深卷积神经网络的预性早产性底面图像质量评估。 眼科视网膜。 2019; 3:444–450。 doi:10.1016/j.oret.2019.01.015。 4。 Rajpurkar P,Irvin J,Zhu K等。 chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。 ARXIV171105225 CS Stat。 2017年11月。http://arxiv.org/abs/1711.05225。 2019年10月23日访问。 5。 Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因? 骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。JAMA。2016; 316:2402–2410。 doi:10。 1001/jama.2016.17216。 3。 Coyner AS,Swan R,Campbell JP等。 使用深卷积神经网络的预性早产性底面图像质量评估。 眼科视网膜。 2019; 3:444–450。 doi:10.1016/j.oret.2019.01.015。 4。 Rajpurkar P,Irvin J,Zhu K等。 chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。 ARXIV171105225 CS Stat。 2017年11月。http://arxiv.org/abs/1711.05225。 2019年10月23日访问。 5。 Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因? 骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。2016; 316:2402–2410。doi:10。1001/jama.2016.17216。3。Coyner AS,Swan R,Campbell JP等。使用深卷积神经网络的预性早产性底面图像质量评估。眼科视网膜。2019; 3:444–450。 doi:10.1016/j.oret.2019.01.015。 4。 Rajpurkar P,Irvin J,Zhu K等。 chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。 ARXIV171105225 CS Stat。 2017年11月。http://arxiv.org/abs/1711.05225。 2019年10月23日访问。 5。 Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因? 骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。2019; 3:444–450。doi:10.1016/j.oret.2019.01.015。4。Rajpurkar P,Irvin J,Zhu K等。chexnet:放射科医生级的肺炎检测在胸部X布斯具有深度学习。ARXIV171105225 CS Stat。2017年11月。http://arxiv.org/abs/1711.05225。2019年10月23日访问。5。Jones LD,Golan D,Hanna SA,Ramachandran M.人工智能,机器学习和医疗保健的发展:光明的未来还是令人担忧的原因?骨JT res。 2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。骨JT res。2018; 7:223–225。 doi:10。 1302/2046-3758.73.BJR-2017-0147.R1。 6。 de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。2018; 7:223–225。doi:10。1302/2046-3758.73.BJR-2017-0147.R1。6。de Fauw J,Ledsam JR,Romera-Paredes B等。 临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。 nat Med。 2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。de Fauw J,Ledsam JR,Romera-Paredes B等。临床上适用的深度学习,用于视网膜疾病中的诊断和转诊。nat Med。2018; 24:1342–1350。 doi:10.1038/ s41591-018-0107-6。2018; 24:1342–1350。doi:10.1038/ s41591-018-0107-6。
背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
SNA Perle 号潜艇的 IPER 期于 2019 年开始,2020 年 6 月该潜艇在水池中发生剧烈火灾。在海军集团位于瑟堡的场址采用了前所未有的工艺进行了史无前例的修复工作后,SNA 于 2021 年底在土伦恢复了 IPER。它于 2022 年 11 月 10 日离开港池后开始码头试验,然后于 2023 年 5 月下海。5 月 22 日在土伦港进行的第一次静态潜水确认了海上试验的开始。
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
少数寄生虫Mansonella Ozzardi和Mansonella Perstans,Mansonellelisois的病因,感染了全球数亿人,但仍然是人类官方病原体中最受研究所研究的人之一。M. Ozzardi在拉丁美洲国家和加勒比海群岛高度普遍,而M. Perstans主要在撒哈拉以南非洲以及南美的一些地区发现。除了其地理分布的差异外,这两个寄生虫还通过不同的昆虫载体传播,并且在其对常用的驱虫药物的反应上表现出差异。缺乏基因组信息阻碍了对Mansonella寄生虫的生物学和进化的研究,并了解物种之间临床差异的分子基础。在当前的研究中,报道了喀麦隆的两个独立临床分离株的高质量基因组和两个来自巴西的ozzardi分离株,另一个是委内瑞拉的。基因组的大小约为76 MB,每个基因编码约10,000个基因,并且基于BUSCO评分约为90%,与其他完整的基因组相似。这些序列代表了Mansonella寄生虫的第一个基因组,并实现了对Mansonella和其他细胞寄生虫之间相似性和差异的比较基因组分析。水平DNA转移(HDT)从线粒体(NUMTS)以及从内共生菌群沃尔巴氏菌(NUWT)转移到宿主核基因组的转移并进行了分析。序列比较抗合性药物的已知靶标二乙基钙化靶标(DEC),伊维沙素和梅本唑的序列发育分析表明,除GON-2基因编码的DEC靶标外,所有已知的靶基因均存在于GON-2基因中,而GON-2基因编码了GON-2基因,该基因在基因组中均来自M. ozzardi Inlecties。 这些新的参考基因组序列将为生物学,共生,进化和药物发现的进一步研究提供宝贵的资源。序列发育分析表明,除GON-2基因编码的DEC靶标外,所有已知的靶基因均存在于GON-2基因中,而GON-2基因编码了GON-2基因,该基因在基因组中均来自M. ozzardi Inlecties。这些新的参考基因组序列将为生物学,共生,进化和药物发现的进一步研究提供宝贵的资源。
英国频道是东北大西洋地区最高的长期鱿鱼着陆点,使鱿鱼成为该地区运作的塞尔萨尔遗迹所利用的最有价值的资源之一。该资源由两个短寿命的长鱿鱼物种:loligo forbesii和L. vulgaris组成,它们的外观相似(它们没有被钓鱼者区分开),但在其生命周期的时间上有所不同:在L. forbesii中,在7月,在L. dufgaris招募的招聘峰会出现在L. dufgaris peak in Nevember中。头足类物种(例如Loligo spp。)的丰度和分布取决于有利的环境条件,以支持生长,繁殖和成功募集。This study investigated the role of several environmental variables (bottom temperature, salinity, current velocity, phosphate and chlorophyll concentrations) on recruitment biomass (in July for L. forbesii and November for L. vulgaris ), as based on environmental data for pre-recruitment period from the Copernicus Marine Service and commercial catches of French bottom trawlers during the recruitment period over the years 2000 to 2021.为了说明环境描述符与生物响应之间的非线性关系,将一般添加剂模型(GAM)拟合到数据中。在各自的招聘期内,获得了单独的模型,以预测法拉克利斯和福布西生物量指数。这些模型解释了生物量指数变化的很高比例(L. forbesii为65.8%,而福尔加里(L. vulgaris)的差异为56.7%),并且可能适合预测资源的丰度(以生物量)和空间分布。此类预测是指导经理的理想工具。由于这些模型可以在开始季节开始前不久进行,因此它们的常规实施将在实时填充管理中进行(由与短寿命物种打交道的薄薄的科学家促进)。
摘要 - Sirius和Polaris是代表康奈尔大学参加AUVSI Robosub 2024比赛的两辆自动驾驶汽车。在过去的一年中,Cuauv成员有无数小时的时间来构建我们的新2024 AUV Sirius。Sirius的上船体压力容器经过精心设计,以增加可及性并减少错误空间,并具有新的矩形轮廓。我们已经设计并集成了电池管理系统,以防止电流过度并最大程度地降低板损坏的风险。此外,我们的新基于伺服的致动系统承诺在完成任务时更可靠。这些进步的目的是建立一个可靠和精确的系统。今年的一个重要战略重点是在两辆车之间的机械和电气系统中都向后兼容。这支持我们整个系统的可靠性。