腺相关病毒(AAV)开发方面取得的最新进展已产生能够比自然产生的衣壳更有效地转导中枢神经系统(CNS)中明确定义的细胞群的工程衣壳 1 – 7 。作为一种快速灵活的体内基因转移平台,这些载体与现有的小鼠遗传学工具结合使用(或替代)时,有望充当研究的变革催化剂。然而,衣壳的开发主要集中于设计用于转导神经元或星形胶质细胞的载体。相比之下,尽管人们逐渐认识到大量非神经元细胞类型对神经系统功能至关重要,但描述专门针对 CNS 内其他细胞群的载体相对较少。其中,中枢神经系统内皮细胞(排列在血管腔面的特化细胞)已被证明能够协调许多关键的生理过程。此外,人们越来越认识到它们的功能障碍是导致多种神经退行性疾病和神经系统疾病的原因 8、9。虽然内皮细胞通常被视为相对同质的实体,但最近的研究强调了脑血管动静脉轴的分子和功能惊人程度的特化 10。例如,动脉内皮细胞在动态耦合血流和神经活动以满足局部能量需求方面起着关键作用 11-13,毛细血管内皮细胞主动抑制细胞间运输以维持血脑屏障完整性 14-16,静脉内皮细胞似乎在神经免疫串扰中充当重要中介 9、17、18。然而,内皮细胞的扩张功能与可用于在体内研究它们的相对有限的工具之间的不匹配是研究进展的主要障碍。一种高效的、具有广泛向性的内皮特异性载体,涵盖动脉、毛细血管和静脉内皮细胞,非常适合加速神经血管研究。
感染严重急性呼吸综合征2的患者的比例在感染几个月后经历了一系列神经精神病学SEMMP TOMS,包括认知缺陷,抑郁和焦虑。基于此类症状的机制是难以捉摸的。最近的研究表明,在Covid-19期间可能发生神经系统损伤。COVID-19-19年后的几个月内持续的神经损伤涉及正在进行的神经精神症状尚不清楚。在一项针对严重急性呼吸道综合征冠状病毒2感染的成年幸存者的大量前瞻性队列研究中,我们分析了神经系统损伤和星形胶质细胞激活的血浆标志物,在感染后6个月测量:神经性丝丝光线:胶质纤维化纤维化酸性蛋白质和总tau蛋白。我们评估了这些标志物是否与急性Covid-19疾病的严重程度以及急性神经精神症状有关(如患者健康调查表抑郁症的焦虑症评估,一般焦虑症评估,一般焦虑症评估,对蒙特利特的认知缺陷的认知评估和对患者的认知性问题的认知评估,并在6个月中确定性症状。 新冠肺炎。在神经系统损伤的标志和急性共同199的严重程度之间没有发现牢固的关联(除了入院持续时间和神经丝光之间的小小效应大小与急性后神经精神症状之间的相关性。这些结果表明,持续的神经精神症状并不是由于持续的神经损伤。
中枢神经系统(CNS)感染(例如脑膜炎,脑炎和脑膜脑炎)是童年时期高死亡率和发病率高的主要传染病之一(1)。病毒,细菌和很少的寄生虫和真菌在其病因中起作用。最常见的细菌剂是肺炎链球菌,奈瑟氏菌脑膜炎和嗜血杆菌流感B型,而常见的病毒剂包括肠内病毒,单纯疱疹病毒,水疗Zoster Zoster Zoster病毒和腮腺炎病毒(2,3)。早期诊断和治疗至关重要,这是由于感染的潜力对快速进展,永久神经系统损害以及严重并发症的风险。微观检查脑脊液(CSF),生化方法和特定的微生物诊断测试用于CNS感染的诊断(4)。特定的微生物测试包括CSF培养,血清学研究,包括多重聚合酶链反应(PCR)测试的核酸扩增测试以及抗体和抗原检测试验。最近,CSF中的多重PCR和脑膜炎/脑炎小组(MEP)等核酸扩增测试已在频率上增加,因为它们的优势,例如获得快速效果,筛查细菌,病毒,真菌和单个样品的影响以及受单个样品影响,以及受抗抗抗菌病的影响较小(5,6))。这项研究旨在研究用MEP评估的可疑中枢神经系统感染的小儿患者的临床和流行病学特征。
血脑屏障(BBB)代表循环系统与大脑之间的关键接口。在果蝇中,BBB由会阴和植物胶质神经胶质细胞组成。周围的神经胶质细胞是形成神经系统最外层并参与营养摄取的小丝分裂活性细胞。粘膜下神经胶质细胞会堵塞分隔连接,以防止大分子细胞细胞扩散到神经系统中。为了解决植物下神经胶质是否仅形成一个简单的屏障,还是与会阴神经胶质细胞和内心神经系统(CNS)细胞建立特定接触,我们进行了详细的形态分析。使用遗传编码的标记以及高分辨率激光扫描共聚焦显微镜和透射电子显微镜,我们确定了延伸到周围层层的细胞过程,并进入了CNS皮层。有趣的是,观察到长细胞过程到达中央大脑神经胶质的神经胶质。GFP重建实验强调了下灌木丛和振兴神经胶质之间的多个膜接触区域。此外,我们确定G蛋白偶联受体(GPCR)的喜怒无常为阴性细胞过程生长的负调节剂。失去喜怒无常的损失引发了大规模的植物下细胞过程中CNS皮层的过度生长,此外,还影响了异生物生物转运蛋白MDR65的两极化定位。最后,我们发现GPCR信号传导(而不是分隔连接形成)负责控制膜过度生长。我们的发现支持果蝇BBB能够通过长细胞过程弥合大脑循环和突触区域之间的通信差距的观念。
摘要:血脑屏障 (BBB) 维持中枢神经系统 (CNS) 的稳态并保护大脑免受循环血液中存在的有毒物质的侵害。然而,BBB 对药物的不渗透性是 CNS 药物开发的障碍,这阻碍了大多数治疗分子进入大脑。因此,科学家一直在努力开发安全有效的技术,以更高的靶向性和更低的脱靶副作用来促进药物渗透到 CNS。本综述将讨论人工纳米药物在 CNS 药物输送中的局限性以及使用天然细胞外囊泡 (EV) 作为治疗载体实现对 CNS 的靶向输送。关于使用 EV 进行 CNS 靶向药物输送的临床试验信息非常有限。因此,本综述还将简要介绍最近在外周神经系统中靶向药物输送的临床研究,以阐明 CNS 药物输送的潜在策略。已经实施了不同的前分离和后分离技术,以进一步利用和优化 EV 的天然特性。各种来源的 EV 也已应用于体外和体内中枢神经系统靶向药物输送的 EV 工程。本文将讨论这些研究在临床上的未来可行性。
感染严重急性呼吸综合征2的患者比例2在感染几个月后经历一系列神经精神病学症状,包括认知缺陷,抑郁和焦虑。基于这种症状的机制难以捉摸。最近的研究表明,在Covid-19期间可能发生神经系统损伤。COVID-19-19年后的几个月内持续的神经损伤涉及正在进行的神经精神症状尚不清楚。在一项针对严重急性呼吸道综合征冠状病毒2感染的成年幸存者的大量前瞻性队列研究中,我们分析了神经系统损伤和星形胶质细胞激活的血浆标志物,在感染后6个月测量:神经性丝丝光线:胶质纤维化纤维化酸性蛋白质和总tau蛋白。我们评估了这些标志物是否与急性Covid-19疾病的严重程度以及急性神经精神症状有关(如患者健康调查表抑郁症的焦虑症评估,一般焦虑症评估,一般焦虑症评估,对蒙特利特的认知缺陷的认知评估和对患者的认知性问题的认知评估,并在6个月中确定性症状。 新冠肺炎。在神经系统损伤的标志和急性共同199的严重程度之间没有发现牢固的关联(除了入院持续时间和神经丝光之间的小小效应大小与急性后神经精神症状之间的相关性。这些结果表明,持续的神经精神症状并不是由于持续的神经损伤。
6 神经免疫学实验室,IRCCS Mondino 基金会,帕维亚,意大利, 7 神经病学和中风科,佩斯卡拉“ Spirito Santo ”医院,佩斯卡拉,意大利, 8 UOC Neurologia O.S.A.- 意大利帕多瓦大学医院,9 意大利维琴察圣博尔托洛医院 AULSS8 Berica 神经内科,10 意大利布雷西亚大学临床和实验科学系神经内科,11 意大利布雷西亚布雷西亚大学医院 ASST Spedali Civili 持续护理和虚弱科神经内科,12 意大利布雷西亚大学数字神经病学和生物传感器实验室,13 法国副肿瘤神经系统综合征和自身免疫性脑炎参考中心,里昂临终关怀医院,神经病学医院,布隆,法国,14 MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314,里昂第一克劳德伯纳德大学,里昂,法国,15 神经内科,Hôpital Pitié Salpétrière,Assistance Publique des Ho ˆpitaux de Paris,巴黎,法国
目前,神经干预、手术、药物和中枢神经系统 (CNS) 刺激是治疗中枢神经系统疾病的主要方法。这些方法用于克服血脑屏障 (BBB),但它们具有局限性,因此需要开发靶向递送方法。因此,最近的研究集中于时空直接和间接靶向递送方法,因为它们可以减少对非靶细胞的影响,从而最大限度地减少副作用并提高患者的生活质量。使治疗剂能够直接穿过 BBB 以促进递送至靶细胞的方法包括使用纳米药物(纳米颗粒和细胞外囊泡)和磁场介导递送。纳米颗粒根据其外壳组成分为有机和无机类型。细胞外囊泡由凋亡小体、微囊泡和外泌体组成。磁场介导的递送方法包括磁场介导的被动/主动辅助导航、趋磁细菌、磁共振导航和磁性纳米机器人——按其发展时间顺序排列。间接方法增加血脑屏障通透性,使治疗剂到达中枢神经系统,包括化学递送和机械递送(聚焦超声和激光治疗)。化学方法(化学渗透促进剂)包括甘露醇(一种普遍的血脑屏障通透剂)和其他化学物质——缓激肽和 1-O-戊基甘油——以解决甘露醇的局限性。聚焦超声有高强度和低强度两种。激光治疗包括三种类型:激光间质治疗、光动力治疗和光生物调节治疗。直接和间接方法的结合并不像单独使用那样常见,但代表了该领域进一步研究的领域。本综述旨在分析这些方法的优缺点,描述直接和间接递送的联合使用,并提供每种靶向递送方法的未来前景。我们得出结论,最有前途的方法是通过鼻腔到中枢神经系统输送混合纳米药物、有机、无机纳米粒子和外泌体的多种组合,然后通过光生物调节疗法或低强度聚焦超声进行预处理,以此作为将本综述与其他针对中枢神经系统输送的综述区分开来的策略;然而,还需要更多的研究来证明这种方法在更复杂的体内途径中的应用。
摘要 精确确定大脑细胞类型的数量和身份是详细概述中枢神经系统 (CNS) 基因和蛋白质表达的先决条件。然而,目前仅对秀丽隐杆线虫的神经系统实现了细胞数量的严格量化。本文,我们描述了一种协同分子遗传、成像和计算技术流程的开发,旨在实现高通量、精确定量,并以细胞分辨率对具有复杂细胞结构的完整组织(如大脑)中的基因表达报告基因进行定量。我们已采用该方法精确确定整个完整的果蝇幼虫 CNS 中的功能性神经元和神经胶质细胞的数量,结果发现神经元数量比之前预测的要少,神经胶质细胞数量要多。我们还发现在这个幼虫发育阶段,两性之间存在意想不到的差异,雌性 CNS 的神经元数量明显多于雄性。对我们的数据的拓扑分析表明,这种性别二态性延伸到 CNS 组织的更深层特征。我们还扩展了分析范围,以量化整个中枢神经系统中电压门控钾通道家族基因的表达,并发现丰度方面的巨大差异。我们的方法能够可靠而准确地量化完整器官内细胞的数量和定位,从而促进对细胞身份、多样性和基因表达特征的复杂分析。
摘要:花样滑冰运动员需要反复训练复杂的动作,以完成跳跃、旋转和冰上精确的步法。越来越多的证据表明,这些训练与中枢神经系统的解剖和功能变化有关。具体而言,长期训练会使前庭系统习惯于花样滑冰中的不寻常动作。花样滑冰运动员对前庭耳石刺激的适应性也更强。在大脑层面上,花样滑冰运动员在运动图上对下肢活动有更大的皮质表现。此外,滑冰运动员的灰质体积更大,白质各向异性分数发生变化,右小脑半球和蚓部 VI-VII 的体积增加。这些适应性变化有利于运动员的整体身体健康,并影响他们的长期行为、学习和认知状况。以下综述讨论了证明花样滑冰对中枢神经系统结构影响的研究。本文还讨论了花样滑冰的社会和心理益处,以及该研究领域未来可能的发展方向。