1。Forward primers: These primers bind to the 5' end of the target DNA sequence and are used to initiate DNA synthesis.2。Reverse primers: These primers bind to the 3' end of the target DNA sequence and are used to initiate DNA synthesis in the reverse direction.3。嵌套引物:这些引物用于嵌套的PCR反应,其中第二组引物用于放大初始PCR产物内的较小区域。4。退化引物:这些引物包含退化碱基,它们是可以与靶DNA序列中多个碱基结合的核苷酸。5。分子信标:这些引物旨在与特定序列结合并在结合后经历构象变化,可以使用荧光检测到。
这项研究引入了创新的机器学习(ML)辅助采样方法,旨在更有效地扩展标准模型(BSM)参数空间。Markov Chain Monte Carlo(MCMC)和Hamiltonian Monte Carlo(HMC)等传统方法经常在高维,多模式空间中面临限制,从而导致计算瓶颈。我们的方法结合了积极训练的深层网络(DNN)和嵌套采样,动态预测更高的样子区域,以加速收敛并提高采样精度。这些可扩展的框架具有可扩展的框架,可以在高层物理学(HEP)研究中进行全面分析,以解决bsm compariete bsm commiate bsm commiate bsm compariate bsm compariate bsm comporiate comportiation comportiation comportiation。
公司预计将于 2024 年上半年开始对患有 MAPK 通路基因改变的晚期实体瘤患者进行 NST-628 的 1 期研究给药 马萨诸塞州剑桥,2024 年 3 月 28 日 — Nested Therapeutics 是一家生物技术公司,开创了用于治疗难治癌症的下一代精准医疗平台,今天宣布美国食品药品监督管理局 (FDA) 批准了 NST-628 的试验性新药 (IND) 申请,用于治疗患有 RAS-MAPK 通路基因改变的晚期实体瘤患者。NST-628 是一种机制新颖、完全脑渗透的非降解泛 RAF/MEK 分子胶,靶向 RAS-MAPK 通路中的 RAF 和 MEK 节点。 Nested 首席医疗官 Philip Komarnitsky 医学博士、哲学博士表示:“目前已获批准的疗法无法治疗绝大多数 KRAS、NRAS 和 BRAF 突变型肿瘤,因此迫切需要为这些难以治疗的癌症患者提供卓越、持久疗效和耐受性的新药。我们相信,NST-628 有潜力为患有 RAS-MAPK 通路变异的晚期实体瘤患者提供差异化的临床特性,包括卓越的治疗指数和预防通路再激活。NST-628 的 IND 批准是我们首个临床阶段项目推进的重要一步,临床试验地点已经启动,我们期待在今年上半年为该试验的首批患者给药。”该项 I 期开放标签、单臂、两部分研究 (NCT06326411) 旨在研究单药 NST-628 对已用尽标准治疗方案的 RAS-MAPK 通路突变/依赖性晚期实体瘤成年患者使用的安全性、药代动力学 (PK)、药效学 (PD) 和初步疗效。该研究包括两部分:剂量递增(A 部分)和剂量扩大(B 部分)。A 部分的主要目标是描述 NST-628 的安全性并确定 B 部分的推荐剂量。欲了解更多信息,请访问 clinicaltrials.gov。关于 NST-628 NST-628 是一种完全脑渗透、机制新颖的非降解分子胶,可靶向 RAS/MAPK 通路中的多个节点。 NST-628 的开发基于 Nested 对信号复合物在癌症中形成和功能的专有结构见解,并解决了其他 MAPK 靶向化合物的常见缺陷,这些化合物仍然无法通过信号通路重新激活来规避耐药性风险。评估与 RAS/MAPK 驱动的细胞和患者衍生模型相关的所有生物标志物的临床前数据共同表明,与其他单独或联合使用的 MAPK 靶向化合物相比,NST-628 具有卓越的抗肿瘤活性,包括在 RAS 和中枢神经系统植入肿瘤模型中,以及耐受性。通过优化半衰期和代谢特征,NST-628 在每日给药计划中实现了卓越的治疗指数以及完全内在血脑屏障渗透性,这些数据支持了 NST-628 作为 RAS 和 RAF 驱动癌症的一流治疗方案的潜力。
哥伦比亚大学 Benjamin Herzberg 医学博士 我有以下相关财务关系需要披露: 哥伦比亚大学员工 企业赞助研究: • 阿斯利康(机构)、Repare Therapeutics(机构)、IDEAYA Biosciences(机构)、安进(机构)、Revolution Medicines(机构)、安斯泰来(机构)、Monte Rosa Therapeutics(机构)、Prelude Therapeutics(机构)、Nested Therapeutics(机构)、Stand up to Cancer(个人)、NIH/NCI ECIA 3P30CA013696-49S2(个人)、NIH/NCI Cancer Moonshot Biobank 补充资金(个人) 其他实质性财务关系: • 咨询:安进、安斯泰来、阿斯利康、礼来、Guidepoint Advisors;酬金‐Boxer Capital、OncLive/MJH Life Sciences、IDEOlogy Health、Eisai
- 讲座1(初学者):数据库简介·什么是数据库,为什么我们使用它们?·数据库的类型(关系,NOSQL等)·公共关系数据库管理系统(RDBMS),例如mySQL - 第2期(初学者):SQL·基础知识·SQL语法的基础知识:选择,从哪里,何处,订购,限制 - 使用一个表格 - 数据类型和无效数据操作·简单数据操纵:插入,更新,更新,更新,删除 - 删除 - 删除 - 删除 - 3(启动)(启动)和关系。 many-to-many relationships ·Foreign keys and primary keys — Lecture 4 (beginner): creating a SQL database ·Introduction to database creation ·Database design considerations ·Normalization, denormalization and trade-offs — Lecture 5 (advanced): advanced queries ·Aggregation and grouping: SUM, COUNT, AVG, MIN, MAX, GROUP BY, HAVING ·Subqueries and nested queries ·Combining queries with联合,相交,除
命名实体识别是一项信息提取任务,旨在识别文本中的命名实体并将其分类为预定义的类别。嵌套的命名实体识别涉及检测外部实体和内部实体。Bionne竞争[1]是CLEF 2024 Bioasq Lab [2]的一部分,重点是从生物医学文本中提取嵌套的实体。嵌套命名实体类型包括解剖(解剖学),化学物质(化学),疾病(DISO),生理学(物理),科学发现(发现),受伤或中毒损害(伤害_poisoning),实验室程序(LABPROC)和医疗设备(设备)[3]。挑战提供俄罗斯,英语和双语曲目。对于英语曲目,组织者提供了一个带有50个记录和一个带有50个记录的验证的培训集。每个记录都包含一个文本,即PubMed摘要,以及以Brat格式注释的实体列表,其本文中实体的起始和结束位置。在测试阶段,组织者发布了一个带有154个摘要和346个额外文件的测试集,总共有500个记录。我们的团队专注于Bionne English Track。我们的系统使用大型语言模型(特别是Mixtral 8x7b指示模型[4])和一个生物医学模型来查找文章中的实体。然后,系统使用统一的医学语言系统(UMLS)语义类型来过滤和汇总实体。实现可以在GitHub 1上找到。
NST-628 的 I 期研究开放并招募晚期实体瘤患者;公司预计很快开始给药 加州圣地亚哥,2024 年 4 月 8 日 — Nested Therapeutics 是一家生物技术公司,致力于开创下一代精准医疗平台以治疗难治性癌症,今天宣布,该公司主导项目 NST-628 的临床前数据在美国癌症研究协会 (AACR) 年会“即将出现的新药”系列的口头报告中进行了展示。报告题为“NST-628 是一种新型、强效、完全脑渗透的 MAPK 通路分子胶,可抑制 RAS 和 RAF 驱动的癌症”,由 Nested 首席科学官兼联合创始人 Klaus Hoeflich 博士发表。数据同时在线发表在《Cancer Discovery》杂志上。 “RAS-MAPK 通路信号失调是肿瘤发展过程中最常见的事件之一,每年影响美国三分之一的新诊断患者,绝大多数患者没有获批的靶向治疗方案。尽管已经针对该通路的每个节点开发了治疗方法,但对于这些难治性癌症患者来说,耐受性和反应持久性仍然是一个挑战,”Hoeflich 博士说。“NST-628 是一种完全渗透脑的非降解分子胶,靶向 RAS-MAPK 通路的 RAF 和 MEK 节点。AACR 上公布的临床前数据显示,NST-628 在肿瘤模型中具有广泛的疗效,并展示了克服现有 MEK 和 RAF 抑制剂以及正在开发的 RAS 抑制剂的局限性的潜力。经过优化的半衰期和代谢特征可在每日给药计划中实现卓越的治疗指数,以及完全内在血脑屏障渗透性,这些数据支持 NST-628 成为 RAS 和 RAF 驱动癌症的一流治疗药物的潜力。”在 AACR 上展示并在 Cancer Discovery 上发表的临床前数据突出了 NST-628 的差异化机制和类药物特性。具体来说:
摘要 动态解耦技术是一种多功能工具,可用于设计具有定制特性的量子态。在捕获离子中,通过射频场修饰的嵌套连续动态解耦 (CDD) 层可以抵消主要的磁移和电移,从而提供电子态的极长相干时间。利用这种增强功能进行频率计量、量子模拟或量子计算,提出了将解耦与激光离子相互作用相结合以对捕获离子的电子和运动状态进行量子控制的挑战。最终,这将需要在修饰解耦状态的量子比特上运行量子门。我们在此提供捕获离子中嵌套 CDD 的紧凑表示,并将其应用于电子 S 和 D 状态以及光学四极跃迁。我们的处理提供了所有有效的跃迁频率和 Rabi 速率,以及这些跃迁的有效选择规则。在此基础上,我们讨论了结合 CDD 和 Mølmer-Sørensen 门的可能性。
AD 是基因组折叠的一个基本特征,2012 年在首批全基因组染色质折叠图谱 1 – 4 中共同发现。TAD 最初在低分辨率(40 kb)哺乳动物 Hi-C 矩阵中通过算法定义为兆碱基规模的基因组块,其中 DNA 序列与域内其他 DNA 序列的相互作用频率明显高于与域外的相互作用频率(图 1a)。TAD 最显著的特征可能是它们有边界可划定(图 1a、b)。为解释这些开创性的经验观察结果,提出了一个令人信服的假设,即大多数哺乳动物基因组折叠成相邻的球状染色质相互作用域,由线性边界 1 – 4 连接(图 1b)。另一项进展是观察到较小的亚兆碱基级染色质结构域(即所谓的亚TAD)在哺乳动物 Hi-C 图谱 5、6 中以层次结构嵌套在 TAD 内(图 1c、d)。在原始低分辨率 Hi-C 数据中仅观察到一小部分嵌套的亚TAD,但在技术进步促进了超高分辨率(1-4 kb)架构图的创建后,它们可以很容易地在整个基因组范围内检测到。嵌套的亚TAD 类似于 TAD 的结构域,也由边界划分。然而,亚TAD 边界表现出较弱的绝缘强度,这表现为它们相对较低地减弱结构域间长距离接触的能力,并且它们比 TAD 更有可能表现出细胞类型动态折叠特性 1、5、7。我们和其他人假设较弱的细胞类型动态亚 TAD 边界具有与 TAD 边界不同的结构、分子或功能特性,但这种可能性仍是一个悬而未决的问题。术语“接触域”也用于 Hi-C 文献中,通常用作传达全套自缔合染色质域(TAD、嵌套亚 TAD 和隔室域(如下所述))的总称。此外,“微型域”或“微型 TAD”最近已用于描述哺乳动物 8、9 和苍蝇 10 中包含单个基因单元的最小规模染色质块。因此,随着技术进步使高分辨率 Hi-C 矩阵成为可能,染色质域的算法识别揭示了越来越小和更精细的结构。此外,一系列功能性遗传扰动实验
在量子计算机上模拟汉密尔顿动力学是量子信息处理的核心。在本次演讲中,我将讨论交换和反交换在汉密尔顿模拟中的作用。在 Trotter 算法中,最坏情况的算法误差与汉密尔顿加数的嵌套交换子的谱范数有关。我们最近的工作 [PRL 129.270502] 表明,汉密尔顿模拟的平均性能与嵌套交换子的 Frobenius 范数有关。为了处理交换子中的 Trotter 误差,我们提出了使用 LCU 补偿 Trotter 误差的汉密尔顿模拟算法,该算法兼具两者的优点 [arXiv: 2212.04566]。反交换一直被视为一种障碍,它使模拟变得更加困难,并且需要额外的资源才能达到所需的模拟精度。在我们最近的工作 [Quantum 5, 534 (2021)] 中,我们发现反向交换可以在 LCU 类型的汉密尔顿模拟算法中提供优势。基于反向交换取消,我们减少了算法误差并提出了改进的截断泰勒级数算法。