要获得癫痫发作的自由,癫痫手术需要完全切除癫痫脑组织。在术中电视学(ECOG)记录中,癫痫组织产生的高频振荡(HFO)可用于量身定制切除缘。但是,实时自动检测HFO仍然是一个开放的挑战。在这里,我们提出了一个尖峰神经网络(SNN),用于自动HFO检测,最适合神经形态硬件实现。我们使用独立标记的数据集(58分钟,16个记录),训练了SNN,以检测从术中ECOG测量的HFO信号。我们针对快速连锁频率范围(250-500 Hz)中HFO的检测,并将网络结果与标记的HFO数据进行了比较。我们赋予了SNN新型的伪影排斥机制,以抑制尖锐的瞬变并证明其在ECOG数据集中的有效性。该SNN检测到的HFO速率(中位数为6.6 HFO/ min)与数据集中发布的HFO率(Spearman'sρ= 0.81)相当。所有8例患者的术后癫痫发作结果被“预测”为100%(CI [63 100%])的精度。这些结果为建造实时便携式电池式HFO检测系统提供了进一步的一步,该检测系统可在癫痫手术期间使用,以指导癫痫发作区的切除。
摘要。我们考虑了一个空间扩展的Fitzhugh-Nagumo神经网络的中镜模型,并证明在短程相互作用主导的政权中,整个网络中潜力的概率密度集中在狄拉克分布中,其质量中心的质量中心溶解了经典的非宽松反应反应fitzhughugh-usion fitzhugh-nagugh-nagumo fitzhugh-nagumo System。为了重新理解我们对这种制度的理解,我们着重于这种集中现象的爆炸。我们的主要目的是得出两个定量和强的收敛估计,证明了该文件是高斯:L 1功能框架中的第一个,第二个是加权L 2功能设置中的第二个。我们开发了原始的相对熵技术来证明第一个结果,而第二个结果依赖于规律性的传播。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
这项研究为从气候监测到广泛的地区到环境项目和农业任务提供了更准确的细分机会。例如,该解决方案促进了对森林区域的有效分析,其特征和变化,即使在云云比例很高的北部地区,同时考虑了气候条件对图像的影响。
在专业文献中可以找到一些有关针灸治疗三叉神经痛的研究。尚未发布有关使用微系统的研究或案例报告。更多的案例研究和可能的科学研究肯定是必要的,以证实乳突针灸的有效性。
后神经痛(PHN)是一种代表性的神经性疼痛类型,在分子水平上吸引了大量研究其诊断和治疗。有趣的是,这项基于脑脉管轴的研究提供了一种新的观点来解释PHN的机制。疼痛的过去神经解剖学和神经影像学研究表明,前额叶皮层,前扣带回皮层,杏仁核和大脑的其他区域可能在降低PHN的降低中起着至关重要的作用。PHN患者(例如乳杆菌)的主要细菌物种会产生短链脂肪酸,包括丁酸酯。证据表明,某些代谢产物(例如丁酸酯)的干扰与痛觉过敏的发展密切相关。此外,肠道中的色氨酸和5-HT充当神经递质,可调节神经性疼痛信号的下降传播。同时,肠神经系统通过迷走神经和其他途径建立了与中枢神经系统的密切联系。本综述旨在调查和阐明与PHN相关的分子机制,重点是PHN,肠道微生物群和相关代谢产物之间的相互作用,同时仔细检查其发病机理。
1 1,深圳Lanmage医疗技术公司,有限公司,深圳市,广东,中国广东,2 Neusoft Medical System Co.,2.中国申阳大学的生命与健康管理学院,第6次放射学系,广州医科大学第二附属医院,中国广州,7七国卫生科学与环境工程学院,宁岑技术大学,宁岑,宁津,中国,8工程学研究中心,医学成像研究中心,<1,深圳Lanmage医疗技术公司,有限公司,深圳市,广东,中国广东,2 Neusoft Medical System Co.,2.中国申阳大学的生命与健康管理学院,第6次放射学系,广州医科大学第二附属医院,中国广州,7七国卫生科学与环境工程学院,宁岑技术大学,宁岑,宁津,中国,8工程学研究中心,医学成像研究中心,<
抽象的智能移动性和自动驾驶汽车(AV),必须非常精确地了解环境,以保证可靠的决策,并能够将公路部门获得的结果扩展到铁路等其他领域。为此,我们基于Yolov5引入了一个新的单阶段单眼3D对象检测卷积神经网络(CNN),该卷积神经网络(CNN)致力于公路和铁路环境的智能移动性应用。要执行3D参数回归,我们用混合锚盒替换了Yolov5的锚点。我们的方法有不同的模型大小,例如yolov5:小,中和大。我们提出的新模型已针对实时嵌入DED约束(轻巧,速度和准确性)进行了优化,该模型利用了被分裂注意的改进(SA)卷积所带来的改进(称为小型分裂注意模型(SMALL-SA)。为了验证我们的CNN模型,我们还通过利用视频游戏Grand Theft Auto V(GTAV)来引入一个新的虚拟数据集,以针对道路和铁路环境。我们在Kitti和我们自己的GTAV数据集上提供了不同模型的广泛结果。通过我们的结果,我们证明了我们的方法是最快的3D对象检测,其准确性结果接近Kitti Road数据集上的最新方法。我们进一步证明,GTAV虚拟数据集上的预训练过程提高了实际数据集(例如Kitti)的准确性,从而使我们的方法比最先进的方法获得了更高的准确性,该方法具有16.16%的3D平均均衡性精度,而硬CAR检测的推理时间为11.1 MS/rtx 3080 gpu的推理时间为11.1 s/simage。
医学概念的有效表示对于电子健康记录的次要分析至关重要。神经语言模型在自动从临床数据中得出医学概念表示方面已显示出希望。但是,尚未对不同语言模型的比较性能,用于创建这些经验表示形式及其编码医学语义的程度,尚未得到广泛的研究。本研究旨在通过评估三种流行语言模型的有效性 - word2vec,fastText和手套 - 在创建捕获其语义含义的医学概念嵌入中的有效性。通过使用大量的数字健康记录数据集,我们创建了患者轨迹,并用它们来训练语言模型。然后,我们通过与生物医学术语进行明确比较来评估学到的嵌入式编码语义的能力,并通过预测具有不同级别可用信息的患者结果和轨迹来隐含。我们的定性分析表明,FastText学到的嵌入的经验簇与从生物医学术语获得的理论聚类模式表现出最高的相似性,分别在0.88、0.80和0.92的经验簇和0.92之间的诊断,过程和医疗代码分别为0.88、0.80和0.92之间。相反,为了预测,Word2Vec和Glove倾向于优于快速文本,而前者的AUROC分别高达0.78、0.62和0.85,分别用于现场长度,再入院和死亡率预测。在预测患者轨迹中的医疗法规时,手套在诊断和药物代码(分别为0.45和0.81)的最高级别上达到了语义层次结构的最高性能(AUPRC分别为0.45和0.81),而FastText优于其他模型的过程代码(AUPRC为0.66)。我们的研究表明,子词信息对于学习医学概念表示至关重要,但是全球嵌入向量更适合于更高级别的下游任务,例如轨迹预测。因此,可以利用这些模型来学习传达临床意义的表示形式,而我们的见解突出了使用机器学习技术来编码医学数据的潜力。