“如果您可以制造一种可能影响特定枢纽基因的药物,那么您可能会影响周围的数百个其他基因,并看到宏观效果,”神经科学系副教授,电气和计算机工程系的副教授,大学的BIO5研究所成员。“例如,这可能是一种可能减慢阿尔茨海默氏病的药物。”
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2025年3月11日。 https://doi.org/10.1101/2025.03.10.25323712 doi:medrxiv preprint
掠夺性狩猎在动物生存中起着至关重要的作用。与运动相关的振动体感信号传导对于小鼠的猎物检测和狩猎至关重要。然而,关于转化振动体感知提示以触发掠食性狩猎的神经回路知之甚少。在这里,我们报告了雄性小鼠振动区域的机械力是掠夺性狩猎的关键刺激。机械诱发的掠食性狩猎是通过脊柱三叉神经核(SP5I)中胆囊基蛋白阳性(CCK +)神经元的化学灭活消除的。CCK + SP5I神经元对机械刺激的强度做出了反应,并将神经信号发送到了与刻板印象捕食狩猎运动作用相关的上丘。突触失活了CCK + SP5I神经元到上丘的投影,机械诱发的掠夺性攻击受损。一起,这些数据揭示了脊柱三叉神经回路,该回路特定于翻译振动的体感提示来引发掠夺性狩猎。
权利打开访问本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,并提供了创意共享许可证的链接,并表明是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
正电子发射断层扫描(PET)是一种用于诊断癌症等疾病的核成像技术。来自圣裘德儿童研究医院科学家的创新进步正在增强该技术检查神经疾病迹象的能力。研究人员将药物Edaravone的重新定位为一种用于治疗肌萎缩性侧索硬化症(ALS)的抗氧化剂,作为与中枢神经系统宠物成像一起使用的探针。
图1:不同数据集中的遗传力(H 2)地图。a。显示低维空间,其颜色由功能网络编码34。b。显示了三个组织轴的本征图,该轴是根据人类连接组项目(HCP)35的函数连接模板22计算得出的。所有个人都与此组级模板保持一致。我们使用单个梯度和谱系/基因型信息来计算单核苷酸多态性(SNP)基于双核苷酸多态性(C),基于Twin的HCP(D)和基于TWIN的QTAB(E)的每个梯度的遗传力(H 2)。f。每两个遗传力图之间的空间相关性。空间自相关被认为使用测量距离变化函数图将图置入图,并且基于1000个排列获得了P变化图值。
早期神经发育中的FOXG1转录lisa hamerlinck 1,2,*,eva d'Haene 1,2,*,Nore van Loon 1,2,3,Michael bevaughan 1,2,3,Maria delRocioPérezBaca 1,2 Esperanza Daal 1,2,Annelies Dheedene 1,2,Himanshu Goel 4,5,BjörnMenten1,2,Bert Callewaert 1,2 1,2,Sarah Vergult 1,2 *这些作者同样贡献了1.贡献1.同等1.维修,根特大学,根特,比利时,4猎人遗传学,纽卡斯尔,澳大利亚瓦拉塔尔5号纽卡斯尔大学,纽卡斯尔大学 - 澳大利亚卡拉汉的医学与公共卫生学院,卫生学院早期神经发育中的FOXG1转录lisa hamerlinck 1,2,*,eva d'Haene 1,2,*,Nore van Loon 1,2,3,Michael bevaughan 1,2,3,Maria delRocioPérezBaca 1,2 Esperanza Daal 1,2,Annelies Dheedene 1,2,Himanshu Goel 4,5,BjörnMenten1,2,Bert Callewaert 1,2 1,2,Sarah Vergult 1,2 *这些作者同样贡献了1.贡献1.同等1.维修,根特大学,根特,比利时,4猎人遗传学,纽卡斯尔,澳大利亚瓦拉塔尔5号纽卡斯尔大学,纽卡斯尔大学 - 澳大利亚卡拉汉的医学与公共卫生学院,卫生学院早期神经发育中的FOXG1转录lisa hamerlinck 1,2,*,eva d'Haene 1,2,*,Nore van Loon 1,2,3,Michael bevaughan 1,2,3,Maria delRocioPérezBaca 1,2 Esperanza Daal 1,2,Annelies Dheedene 1,2,Himanshu Goel 4,5,BjörnMenten1,2,Bert Callewaert 1,2 1,2,Sarah Vergult 1,2 *这些作者同样贡献了1.贡献1.同等1.维修,根特大学,根特,比利时,4猎人遗传学,纽卡斯尔,澳大利亚瓦拉塔尔5号纽卡斯尔大学,纽卡斯尔大学 - 澳大利亚卡拉汉的医学与公共卫生学院,卫生学院
特别是,特定基因中的突变(DCHS1)降低了这些神经元的刺激阈值。此外,该研究表明,这些神经元具有更复杂的形态,并改变了与邻居的突触联系,这可以解释为什么它们过度活跃。研究人员能够通过使用抗癫痫药的Lamotrigine来扭转这种多动症。
细胞微环境是围绕细胞的化学物质,蛋白质和其他信号的汤,并且是人体所特有的。例如,骨髓微环境包含生长血细胞和重组骨骼的信号。转移的神经母细胞瘤细胞经常迁移到骨髓,那里的骨形态发生蛋白(BMP)途径信号高度活跃。研究人员表明,BMP信号传导使神经母细胞瘤细胞更容易受到视黄酸的影响。
对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
