目的:脑电图(EEG)可用于估计新生儿的生物脑时代。在月经年龄和脑年龄之间的差异,称为脑年龄差距,可能会导致成熟偏差。现有的大脑年龄EEG模型不太适合临床COT侧用途,用于估计新生儿的脑年龄间隙,因为它们依赖于相对较大的数据和预处理要求。方法:我们使用降低的数据要求培训了一种来自具有非神经开发的婴儿和幼儿发展(BSID)结果的早产新生儿的静止状态脑电图数据的深度学习模型。随后,我们在两个临床部位的两个独立数据集中测试了该模型。结果:在两个测试数据集中,仅使用单个通道的静息状态脑电图活动的20分钟,模型生成准确的年龄预测:平均绝对误差= 1.03周(p值= 0.0001)和0.98周(pValue = 0.0001)。在一个测试数据集中,在9个月的随访BSID结局中,严重异常结果组的平均新生儿脑年龄间隙显着大于正常结局组的平均脑年龄差异:平均脑年龄差距的差异差异= 0.50周(p-value = 0.04)。结论:这些发现表明,深度学习模型对来自两个临床部位的独立数据集进行了普遍性,并且模型的脑年龄间隙幅度在正常和严重的随访神经发育结果的新生儿之间有所不同。2024国际临床神经生理联合会。由Elsevier B.V.明显:新生儿大脑年龄间隙的幅度,仅使用单个通道的静息状态脑电图数据的20分钟来估算,可以编码临床神经发育价值的信息。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经Peer Review认证)是作者/资助人,他已授予Medrxiv的许可证,以在2025年2月18日发布的此版本中显示在版权所有者中。 https://doi.org/10.1101/2025.02.14.25322283 doi:medrxiv preprint
越来越多的证据表明,构成微生物组的人类肠道细菌与几种神经退行性疾病有关。在几项研究中发现了帕金森氏病(PD)和阿尔茨海默氏病(AD)患者的细菌种群的失衡。这种营养不良很可能会降低或增加分别具有保护性或有害人体的微生物组衍生的分子,并通过所谓的“肠脑轴”传达给大脑的这些变化。微生物组衍生的分子Queuine是一种富含大脑中的核酶,仅由细菌产生,并由人类通过其肠道上的表现来挽救。Queuine用枪支抗密码子在TRNA的Wobble位置(位置34)取代鸟嘌呤,并促进有效的细胞质和线粒体mRNA翻译。Queuine耗竭会导致蛋白质的折叠和激活,并激活小鼠和人类细胞中内质网应激和展开的蛋白质反应途径。蛋白质聚集和线粒体障碍通常与神经功能障碍和神经变性有关。为了阐明女王是否可以促进蛋白质折叠,并防止导致蛋白质病的聚集和线粒体缺陷,我们在几种化学合成的Queuine STL-101中测试了几种化学合成的女性STL-101的作用。用STL-101预处理神经元后,我们观察到高磷酸化的α-突触核蛋白的降低显着降低,α-突触核蛋白的标记是灰核核疗法的PD模型中α-突出蛋白聚集的标志物,并且在Accute and Actau consation and actau pyphosphoration中降低了Actuce and Actau phossephose contau pysease contau pysepy pd。此外,在AD模型以及PD的神经毒性模型中,在用STL-101预处理的细胞中发现了神经元存活的相关增加。测量180个神经健康个体血浆中的queuine表明健康的人类维持皇后区的保护水平。我们的工作已经确定了女性在神经保护中的新作用,从而发现了神经系统疾病中STL-101的治疗潜力。
1 Division of Paediatric Cardiac Plegery, Aphm La Timone, Marseille, France, 2 department of pediatrics, Division of Neurology, Timone Hospital, Marseille, France, 3 Department of Neuroradiology, Aphm La Timone, Marseille, France, 4 Cemerem, Aphm la Timone, Marseille, 5 Aix-Marseille Unit For Clinical Research and Economic Evaluation, AP - HM, Marseille, France, 6 Department of Paediatric Neurology, APHM La Timone, Marseille, France, 7 Department of Paediatric Cardiology, Aphm La Timone, Marseille, France, 8 Department of Paediatric Aneshesia and Intensive Care Unit, APHM Marseille, France, 9 Department of Neonatology, Aphm La Conception, Marseille, France, 10 Aix Marseille Univ, CNR,LPL,Aix-en-Provence,法国,11 Inserm U1106系统神经科学研究所,法国Marseille,法国
Iyer 博士表示,他们的工具会将儿童的神经发育年龄与其真实出生年龄进行对比,以追踪大脑健康状况。去年,该团队将类似的人工智能技术应用于早产儿的心电图 (ECG) 心脏监测数据,以便为儿科医生提供更好的发育信息,但大脑年龄工具将这项技术提升到了一个新水平。
微RNA(miRNA)是通过mRNA的降解或翻译抑制来调节基因表达的短(〜21 nt)非编码RNA。积累证据表明miRNA调节在多种神经退行性(ND)疾病的发病机理中的作用,例如,例如阿尔茨海默氏病,帕金森氏病,帕金森氏病,肌萎缩性侧面硬化症和亨廷顿病(HD)。几项旨在探讨miRNA调节在NDS中的作用的系统级别研究,但这些研究仍然具有挑战性。该问题的一部分可能与缺乏足够丰富或同质的数据有关,例如时间序列或在模型系统或人类生物样本中获得的细胞类型的数据,以说明上下文依赖性。该问题的一部分也可能与与miRNA和mRNA数据的准确系统级建模相关的方法学挑战有关。在这里,我们批判性地回顾了用于分析表达数据的机器学习方法的主要家族,强调了使用形状分析概念作为精确建模高度尺寸的miRNA和mRNA数据的添加价值,例如在研究HD过程中获得的概念,并详细介绍了这些概念和方法的潜在方法和方法来对这些概念和方法进行建模复杂的复杂信息数据。
以神经元结构和功能进行性丧失为特征的神经退行性疾病是现代最具破坏性的健康挑战之一(Gadhave等,2024)。疾病,例如阿尔茨海默氏病(AD),帕金森氏病(PD),多发性硬化症(MS)和肌萎缩性侧面硬化症(ALS),很少有常见的病理标志:神经变性,神经变性,神经蛋白流量,神经蛋白流量和障碍脑脑完整性/连接性/连接性/连接性(COVA等)。中枢神经系统(CNS)完整性中免疫介导的反应的这种复杂相互作用已成为神经元损伤和疾病进展的关键贡献者(Jellinger,2010年)。对该主题的研究越来越多,强调了揭示神经素浮游机制和恢复大脑稳态的重要性,这将为创新的治疗策略铺平道路。这个研究主题,标题为“神经因浮肿和神经退行性疾病),构成了主要研究人员的14个有见地的贡献。共同探索了神经素浮游,生物标志物的诊断潜力以及有希望的治疗途径的分子和细胞基础。提供了有关外围衍生的危险因素(例如2型糖尿病(T2DM),骨关节炎和冠状病毒病2019(CoVID-19)的其他见解。本社论强调了本研究主题中介绍的关键主题和发现。
开发神经退行性临时媒体的解剖学验证协议:,Winifred Trotman 3,Francisco Javier Romero Molina 5,JoséCarlosBlood 5,Jimenez Sea of Jimenez 5,Pillar Mars Rabal Mars Rabal 5,Prieto 5,Prieto 5,Ricardo 5,Ricardo insaul 5,Ricardo insaul 5,la la la la la la la la em em em em em em em em em。Wisse 7
血管危险因素(例如高血糖和血小板过度激活)在2型糖尿病(T2D)中起着重要作用,这是AD的危险因素。我们研究了105名认知未损害的成年人(包括21个淀粉样蛋白的成年人(Aβ -NEG对照组),包括21名淀粉样蛋白的老年人(Aβ -NEG对照组),以及45个淀粉样蛋白稳态的患者A A A A A AA APAiria Impair Impair或Dimpimair Impair或Dimpimair Impair(包括21例),我们研究了105名认知未损害的成年人的血小板水平,血小板计数;平均血小板体积(MPV)和AD神经成像标记之间的关系。我们评估了两个与T2D相关的血管危险因素的组间差异,然后对血液参数与多模式神经影像学(结构MRI,18 F-氟脱氧葡萄糖和18 F-氟-pet)之间的关联在Cogni-Inty-Unical Imperigancy Undimprimpightimpiraightimpightim Imprighightimpiraightimpigh的成年患者中使用了β-POPSOS,并使用了β-pospos。与β -neg对照组相比,β -POS患者的血小板计数较低和MPV较高。在认知无影响的成年人中,血糖水平升高与广告敏感区域的萎缩和低代谢有关。在β -Pos paptent中,MPV增加与内嗅和周围皮层萎缩有关。健康个体的亚临床但高血糖水平和AD患者的MPV水平与广告敏感大脑区域的神经变性有关,而与淀粉样蛋白沉积无关。©2022作者。由Elsevier Inc.出版这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
髓磷脂代表一片修饰的质膜,包裹在轴突周围,在启用周围和中枢神经系统中快速神经脉冲传导方面具有至关重要的作用,并为轴突提供营养和代谢的支持。它也是多发性硬化症中免疫系统的主要目标(Fletcher等,2018)。几项研究表明,通过TRKB激活,BDNF对髓鞘化过程的影响(Fletcher等,2018)。即,提出的机制是,BDNF/ TRKB信号传导实际上是激活有丝分裂原激活的蛋白激酶/ ERK途径的级联反应,作为最终结果,它促进了前呈淡黄色的少突胶质细胞和髓鞘形成的差异化,这既有少突胶质细胞和内在含量。使用了TRKB受体的小分子激活剂而不是BDNF时,已经报道了相同的结果(Fletcher等,2018)。由于TRKB受体位于少突胶质细胞上,因此表明,在脱髓鞘病变之后,该受体可以积极调节髓磷脂的表达并引起再生(Huang等,2020)。最近的研究还报道说,在创伤性脑损伤后保持髓磷脂完整性至关重要(Fletcher等,2021)。的确,在施用TRKB受体激活剂LM22A-4对遭受创伤性脑损伤的小鼠后,保留了髓磷脂完整性后,可以预防皮质萎缩,同时减少神经胶质病(Fletcher等人,2021年)。这些研究表明,在赔偿受损的髓磷脂时,TRKB受体可能是引起人们关注的目标,尤其是如果我们考虑到这是多发性硬化症中的主要事件之一。