哮喘是一种高度异质性炎症性疾病,对呼吸系统和中枢神经系统都有显着影响。基于人群的研究和动物模型发现哮喘与许多神经系统疾病(包括抑郁症,焦虑和神经发育序列)相结合。此外,怀孕期间的母体哮喘与后代的神经发育障碍有关,例如自闭症谱系障碍和注意力不足多动障碍。在本文中,我们回顾了哮喘的最新流行病学研究,这些研究确定了与神经系统状况的联系,这既与患有哮喘患者和怀孕期间哮喘的影响有关,可能会对后代神经发育产生。我们还讨论了研究这些联系,解决知识差距的相关动物模型,并探索该领域的潜在未来方向。
阿尔茨海默氏病(AD),痴呆症的主要形式,全世界数百万的影响,对医疗保健系统和社会施加了明显的负担(Gra效率(Gra实施等)(Gra效率),2021年; Scheltens等人,2021年; Jucker和Walker,20223)。它的特征是认知的逐步下降,破坏了日常活动并导致独立性丧失。目前,全球有超过5000万人与AD相比,预测表明,到2050年,这个数字可能三倍(Rajan等,2021; Hammers等,2023)。痴呆症的经济影响是巨大的,预计相关成本将从2020年的1万亿美元增加到到2030年到2030年的2万亿美元,这加剧了社会和财务菌株对家庭和经济的影响(Wong,2020; Alzheimers Dement,2023; Hammers Dement,2023; Hammers et al。新兴的证据表明,神经素的流量在AD的复杂病理中起着至关重要的作用,
神经因浮肿是指中枢神经系统(CNS)对某些刺激的高度复杂反应,例如创伤,感染和神经退行性疾病。这是一种细胞免疫反应,激活神经胶质细胞,炎症介质被释放,而活性氧和氮物质合成。神经蛋白流量是一个关键过程,有助于保护大脑免受病原体的侵害,但不适当或长期持久的泛滥产生病理状态,例如帕金森氏病,阿尔茨海默氏病,多发性硬化症,多发性硬化症以及其他神经变性疾病,这些疾病显示出各种神经伴侣的途径,分布在各个部分中。本综述揭示了与神经变性相关的主要神经敏感信号通路。此外,它探讨了有希望的治疗途径,例如干细胞疗法,遗传干预和纳米颗粒,旨在调节神经素浮肿,并可能阻碍或减速这些疾病的发展。对神经浮动肿瘤和这些疾病之间复杂的联系的全面理解对于制定未来治疗策略的发展至关重要,这些治疗策略可以减轻这些毁灭性疾病造成的负担。
Abbreviations: Alzheimer's Disease (AD), amnestic Mild Cognitive Impairment (aMCI), Healthy Controls (HCs), Healthy Volunteers (HVs), fatty acids (FAs), polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), saturated fatty acids (SFAs), High- Affinity Binders (HABs), Mixed-Affinity Binders (MABs), Low-Affinity Binders (LABs), central nervous system (CNS), 18-kDa Translocator Protein (TSPO), region(s) of interest (ROIs), N-acetyl-N-(2-[18F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([18F]-FEPPA), positron排放断层扫描(PET),白介素(IL),细胞因子(CK),eicosapentaenoic酸(EPA),Docosahexaenoic(DHA),亚油酸(LA),亚麻酸(LNA),thumor Necrosis Necrosis-necrosis-α(TNF-α)(TNF-α),Interlecin inner interlies Interlies intre inur-inter-inter-inur-1b(beinter-neur-1b(IL-1B), - 1B(IL-1B),1B(iil-1B),1B(iil-1b),1B(iil-1b),1B(iil-1B) (BDNF)和肿瘤生长因子-B(TGF-B)。
能够在不同时间点上空间绘制多层的OMIC信息的能力2允许探索促进脑发育,分化,人体化和3次疾病改变的机制。本文中,我们开发并应用了空间tri-omic测序技术,4 dbit arp-seq(空间ATAC – RNA-蛋白质 - 蛋白质)和DBIT CTRP-SEQ(空间切割&TAG-5 RNA – Protein-seq)以及多重免疫液(Codexial Imagiat in Dynamexial in Dynampatial in Dynamexial in Dynamecial in Dynamecial in Dynamecial in Dynampatial in Dynampatial in Dynampatial in Dynampatial in神经炎症。与人类发育中的大脑感兴趣的区域相比,在产后P0到P21的不同阶段获得了小鼠脑的时空三个骨图。具体来说,在皮质9区域中,我们发现了10层定义转录因子的染色质可及性的时间持久性和空间扩散。在call体中,我们观察到整个子区域髓磷脂基因的动态染色质启动11。一起,它提出了层特异性投影12个神经元的作用,以辅助轴突生成和髓鞘形成。我们进一步映射了溶血石13(LPC)神经炎症的大脑,并在14个发育和神经炎症中观察到了共同的分子程序。的小胶质细胞表现出炎症和分辨率的保守和不同程序15,不仅在LPC病变的核心上瞬时激活16,而且在远端位置也大概是通过神经元回路。19因此,这项工作揭示了大脑发育和神经炎症的17种常见和差异机制,从而获得了18个有价值的数据资源,以研究大脑发育,功能和疾病。
补体系统是古老的蛋白水解级联反应集合,在调节先天和适应性免疫方面具有很好的描述作用。随着革命在互补的临床治疗中的融合,中枢神经系统中特定相关的可靶向途径的发现以及过去15年中出现的综合多膜技术的发展,在阿尔茨海默病疾病和其他神经脱生的过程中,精确的治疗性靶向均可在阿尔茨海默疾病和其他范围内进行处理。作为组织困扰的传感器,补体系统可保护大脑免受微生物挑战以及死亡和/或损坏的分子和细胞的积累。添加较新发现的补体功能使其至关重要,即设计以神经发育,成人神经可塑性和补体系统的神经保护功能中的有益作用,保留了补体的有益作用。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
1运动研究小组疼痛(疼痛),物理疗法,人类生理学和解剖学系,体育与物理疗法学院,Vrije Universiteit Brussel,1090年,布鲁塞尔,比利时,布鲁塞尔; huanyu.xiong@vub.be(h.-y.x。); jolien.hendrix@vub.be(J.H.); arne.wyns@vub.be(A.W。); jente.van.campenhout@vub.be(J.V.C.); andrea.polli@vub.be(A.P。)2比利时3000鲁汶环境与健康中心公共卫生和初级保健中心,比利时3000卢文研究基金会(FWO) - 布鲁塞尔1000,比利时布鲁塞尔4号,伦敦,安大略省西部安大略省大学物理治疗学院,在加拿大N6A 3K7,加拿大N6A 3K7; sschabru@uwo.ca 5 The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada 6 Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium 7 Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of哥德堡,瑞典41390Göterbog *通信:jo.nijs@vub.be2比利时3000鲁汶环境与健康中心公共卫生和初级保健中心,比利时3000卢文研究基金会(FWO) - 布鲁塞尔1000,比利时布鲁塞尔4号,伦敦,安大略省西部安大略省大学物理治疗学院,在加拿大N6A 3K7,加拿大N6A 3K7; sschabru@uwo.ca 5 The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada 6 Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium 7 Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of哥德堡,瑞典41390Göterbog *通信:jo.nijs@vub.be
Platon Megagiannis, 1,11 Yuan Mei, 2,3,11 Rachel E. Yan, 4,5 Lin Yuan, 1 Jonathan J. Wilde, 6,7 Hailey Eckersberg, 1 Rahul Suresh, 1 Xinzhu Tan, 1 Hong Chen, 1 W. Todd Farmer, 8 Kuwook Cha, 9 Phuong Uyen Le, 1 Helene Catoire, 1 Daniel Rochefort, 1 Tony Kwan, 10 Brian A. Yee, 3 Patrick Dion, 1 Arjun Krishnaswamy, 9 Jean-Francois Cloutier, 1 Stefano Stifani, 1 Kevin Petrecca, 1 Gene W. Yeo, 3 Keith K. Murai, 8 冯国平, 6,7 Guy A. Rouleau, 1 Trey Ideker, 2, * Neville E. Sanjana, 4,5 和扬州1,12,*1加拿大魁北克省蒙特利尔市麦吉尔大学医学与健康科学学院蒙特利尔神经病学研究所医院神经内科和神经外科系 2 美国加利福尼亚州圣地亚哥市加利福尼亚大学圣地亚哥分校医学系遗传学分部 3 美国加利福尼亚州拉霍亚市加利福尼亚大学圣地亚哥分校基因组医学研究所干细胞项目细胞和分子医学系 4 美国纽约州纽约纽约基因组中心 5 美国纽约州纽约大学生物系 6 美国马萨诸塞州剑桥市麻省理工学院 (MIT) 麦戈文脑研究所脑与认知科学系 7 美国马萨诸塞州剑桥市麻省理工学院和哈佛大学布罗德研究所斯坦利精神病学研究中心 8 加拿大魁北克省蒙特利尔市蒙特利尔综合医院麦吉尔大学健康中心研究所脑修复和综合神经科学项目神经科学研究中心加拿大魁北克省蒙特利尔市麦吉尔大学医学与健康科学学院生理学系 10 加拿大魁北克省蒙特利尔市麦吉尔大学麦吉尔基因组中心和人类遗传学系 11 这些作者贡献相同 12 主要联系人 *通信地址:tideker@ucsd.edu (TI)、yang.zhou7@mcgill.ca (YZ) https://doi.org/10.1016/j.celrep.2024.114637
多项研究表明神经炎症过程与多种神经精神疾病的病理生理有关(Hirsch 和 Hunot,2009 年;Sidoryk-Wegrzynowicz 等人,2011 年),包括 MA 使用障碍(Kohno 等人,2019 年)。活化的神经胶质细胞通过分泌多种促炎介质在神经炎症中发挥核心作用(Minghetti 等人,2005 年)。在临床前研究中,MA 激活小胶质细胞,阻断 MA 诱导的神经胶质细胞激活可减弱随后的 MA 诱导神经变性(Ladenheim、Krasnova 等人 2000 年;Flora、Lee 等人 2002 年;Thomas 和 Kuhn 2005 年;Fantegrossi、Ciullo 等人 2008 年;Narita、Suzuki 等人 2008 年;Thomas、Francescutti-Verbeem 等人 2008 年)。在一项人体成像研究中,与未使用 MA 的对照组相比,戒断 MA 的使用者中激活的小胶质细胞的标记物显著增加,并且结合水平与戒断 MA 的时间呈负相关(Sekine、Ouchi 等人 2008 年)。在人类 MA 使用者中,促炎性细胞因子 (IFN-α、IL-1β、IL-2、IL-6、TNF-α) 和趋化因子 (MCP-1、MIP-1α、MIP-1β) 的血浆水平升高与神经认知功能障碍显著相关 (Loftis 等人,2011a)。神经炎症和相关的神经认知功能障碍在 HIV 感染中很常见,而 MA 的使用会增加 HIV 感染者神经认知障碍的风险 (Soontornniyomkij 等人,2016)。总之,这些结果表明,抵消 MA 诱导的神经炎症和小胶质细胞活化的药物可能会减少 MA 诱导的神经退行性,从而改善 MA 使用障碍的神经认知和治疗结果。相比之下,其他作者得出的结论是,MA 诱导的小胶质细胞活化相对温和,可能不是 MA 相关多巴胺能毒性的主要诱因 (Shaerzadeh et al., 2018)。有必要对针对 MA 诱导的小胶质细胞活化和神经炎症的药物进行临床试验。