图1 AAV-2XTAU注射动物中AT8和Thios病理进展的定量3D分析。(a)本研究中执行的实验程序和纵向样本收集的摘要。(b)荧光显微照片说明了在3和6个月时实验动物的海马形成中Neun(蓝色),AT8(RED)和THIOS(绿色)的分布。tau病理的进展。(c)所检查的标记的代表性共焦图像,以量化疾病进展,以及在分析区域中通常观察到的四个典型的神经元特征:健康,prestangle,成熟的缠结和鬼缠结。(d)进行高分辨率共聚焦图像的三维重建,以识别和量化TAU病理的进展。每个神经元谱的表达:对每个分析的区域占用的3D体积(MM3)进行计算并校正:CA3/HILUS,CA1,Subiculum(sub),左ERC,左ERC和对侧ERC(E)。图形摘要显示了左右半球的AT8和Thios的分布模式以及所研究的两个时间点之间的分布模式。比例尺:200μm(b),10μm(c)。* P <0.05 ** P <0.01 *** P <0.001,双向ANOVA,Sidak的事后测试。
摘要引入脑小血管疾病(SVD)与炎症之间的关联已在很大程度上使用炎症的外周血标记进行了检查,很少有研究测量大脑内部的炎症。我们使用[11 C] PK11195正电子发射断层扫描(PET)成像研究了SVD与体内神经炎症之间的横截面关系。招募了42位参与者(根据NIA-AA指南,14个健康对照,14个轻度阿尔茨海默氏病,14例淀粉样蛋白阳性轻度认知障碍)。使用[11 C] PK11195 PET Imaging评估了神经炎症,这是小胶质细胞激活的标志物。为了量化SVD,我们评估了白质超强度(WMH),血管周空间扩大,脑微粒和缝隙。的综合评分,该分数是针对全球SVD负担,以及高血压动脉炎和脑淀粉样血管病(CAA)的SVD亚型。一般线性模型检查了SVD和[11 C] PK11195之间的关联,调整性别,年龄,教育,认知,扫描间隔,并通过错误发现率(FDR)进行多次比较。优势分析直接比较了高血压动脉病和CAA评分作为[11 C] PK11195的预测指标的相对重要性。结果全球[11 C] PK11195结合与SVD标记有关,特别是在高血压动脉炎的典型区域:深层微粒(β= 0.63,F(1,35)= 35.24,p <0.001),深WMH(β= 0.59,T = 0.59,T = 4.91,P = 4.91,P <0.001)。结论小胶质细胞激活与SVD有关,尤其是SVD的高血压动脉瘤亚型。在优势分析中,高血压动脉炎的评分在预测[11 c] PK11195在全球结合的[11 c] PK11195和37个感兴趣的区域中的28个区域,尤其是内侧颞叶(β= 0.66-0.76,t = 0.66-0.76,t = 3.90-5.58,fdr-crorded p(p fdr c fdr)和0.002(p fal)= <<0.002) - = 0.51–0.57,t = 3.53–4.30,p fdr = 0.001–0.004)。尽管需要进一步的研究来确定因果关系,但我们的研究表明,靶向神经炎症可能代表了SVD的新型治疗策略。
1 Colins Collins,CORINS,CO CORCORADO州立大学卫生与运动科学系2哥伦比恩卫生系统健康老化中心,科罗拉多州立大学,科罗拉多州柯林斯堡,CO 3环境与放射健康科学系,科罗拉多州立大学,科罗拉多州立大学,柯林斯堡,CO
▪NB:下载数据可能存在相关成本。这些费用可能会因您的服务提供商而异,如果您在国外使用智能手机,可能会很高。请检查您的电话关税或联系您的服务提供商以获取更多详细信息。▪通过QR(快速响应)代码获得的此海报的副本仅供个人使用,未经作者书面许可,不得复制。▪要使用QR码,请使用或下载来自Apple App Store TM或Android Play Store TM的名为“ QR码读取器”的应用。
摘要。- 目标:阿霉素(DXR)通常用作癌症治疗的药物。但是,有报道称与化学疗法相关的神毒性。galan- tamine(GLN)是一种抑制粉状酶活性的药物,可缓解在患有阿尔茨海默氏病的个体中常见的神经毒性作用。这项研究表达了GLN对DXR诱导的脑神经毒性的潜在改善作用。材料和方法:将四十只大鼠分为四个单独的小组进行一项持续14天的研究。对照组给予正常的SA,DXR组通过腹膜内注射给对照组5 mg/ kg DXR Everry三天(累积剂量为20 mg/ kg)。每天通过口服gln给予GLN组5 mg/kg GLN,而DXR+GLN组则同时获得DXR+GLN。使用ELISA通过炎症和氧化损伤标志物的浓度来评估脑蛋白的分析。结果:DXR治疗导致通过核面升高Kappa B(NF-κB)(NF-κB)和环氧合酶-2(COX-2)(COX-2)(COX-2)的氧化应激,恶质脱氢(MDA)的氧化应激(MDA)以及超级氧化突变酶(SOD)的氧化酶(SOD)和GHOTASE(GHITAPASE)的氧化(GHSAL的氧化)(COX-2)和GLUTAPASE的下降,氧化应激(COX-2)的氧化应激(COX-2),。 caspase-3和降低Bcl-2,并增加脂质过氧化,线粒体功能受损。 与DXR一起施用GLN时,已经观察到它会积极影响各种生物学标志物,包括COX-2,NF-κB,MDA,SOD,SOD,BAX,BAX,BCL-2和CASPASE-3 LEV-ELS。。 caspase-3和降低Bcl-2,并增加脂质过氧化,线粒体功能受损。与DXR一起施用GLN时,已经观察到它会积极影响各种生物学标志物,包括COX-2,NF-κB,MDA,SOD,SOD,BAX,BAX,BCL-2和CASPASE-3 LEV-ELS。此外,GLN可改善脂质过氧和线粒体活性。结论:大鼠的DXR疗法会导致神经毒性的发展,而GLN的结构可以恢复这些毒性,这表明GLN有望证明DXR引起的神经毒性作用。
海马是一个大脑区域,具有结构性重组或神经层状城市的能力。它可以快速修改现有的神经回路,甚至可以通过神经发生过程创建完全新颖的神经联系[1]。具体而言,海马的染色回(DG)以其持续生成新神经元的能力而闻名[2]。重要的是,海马的神经遗传潜力似乎对外部刺激具有很高的反应。例如,海马神经发生和神经塑性过程是响应体育活动的促进[3],而压力,酒精和睡眠剥夺会损害它们[4,5]。此外,对老年人的研究表明,海马神经塑性和海马体积的显着降低,与年龄相关的认知下降有关[6,7]。海马体积损失可以在认知障碍前几年[8],而在康复氨基征领域1(CA1)的老年人中,患有轻度认知障碍(MCI)严重损失,预测海马亚领域预测朝着阿尔茨海默氏症的痴呆症的进展[9-13]。已经提出,海马神经遗传学和神经塑性电位受到几种神经营养和炎症标记的调节[14]。在老年人中,一种低级炎症状态,被称为“炎症” [15],被认为会损害海马可塑性[14,16]。随着整个体内炎症,旧细胞和受损细胞的炎症开始释放出炎性细胞因子,例如白介素6(IL-6),进入血液流。这些衰老细胞的数量随着衰老而逐渐增加[17],导致
研究文章:新研究|神经系统星形胶质细胞衍生的外泌体miR-148A-3P的疾病通过调节小胶质细胞表型https://doi.org/10.1523/10.1523/Eneuro.0336-23.2023 Revestection ty抑制神经炎症和恢复神经系统损伤的神经功能。版权所有©2024 Qian等。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
血肿诱导的神经炎症是脑出血(ICH)预后不良的原因。因此,促进血液清除和阻塞过度激活的炎症是ICH治疗的合理方法。β位点淀粉样蛋白前体蛋白(APP)裂解酶-1(BACE1)是调节神经退行性疾病中小胶质细胞表型转变的关键分子。因此,这项研究的目的是研究BACE1在ICH中小胶质细胞吞噬作用和炎症特征中的作用。在这里,我们证明了使用自体血模型和原发性小胶质细胞刺激靶向小胶质细胞中BACE1的独特优势。在ICH早期抑制BACE1时,较少的残留血肿仍然存在,这与有利于吞噬作用和抗炎的遗传特征的增加一致。另外,抑制BACE1增强了抗炎细胞因子的分泌,并大大降低了促炎基因的表达,该基因的表达受到转录3激活剂的信号转导和磷酸化的调节(STAT3)。进一步对STAT3磷酸化的药理抑制有效地阻断了由于BACE1诱导引起的小胶质细胞的促炎和弱吞噬表型。总而言之,BACE1是调节ICH后小胶质细胞的炎症和吞噬表型的关键分子,靶向抑制BACE1/STAT3途径是对ICH诱导的神经系统损伤的未来治疗的重要策略。
鼻内施用的脱铁胺(DFO)有望成为神经退行性疾病和神经系统损伤的新型治疗方法。鼻内(IN)递送允许DFO等药物绕过血液 - 脑障碍,并在几分钟之内沿嗅觉和三叉神经沿嗅觉和三叉神经在细胞外传递(Thorne等,2004; Chen等,1998; Frey,1997; Thorne等,1995; Thorne等,1995)。鼻内递送具有最大程度地减少全身性暴露的额外好处,从而减少副作用以及无创的。脱铁胺是一种经认可的通用抗氧化剂和抗炎药,其结合铁具有很高的亲和力,但与系统给药的大脑渗透有限(Di Paola等,2022)。游离铁在阿尔茨海默氏病(AD),帕金森氏病和其他脑部疾病的个体的大脑中异常积累(Rao等,2022)。在患有AD的人的大脑中,也含有铁的自由血红素,也增加了血红素和铁灭活的人脑脑毒蕈碱毒蕈碱乙酰胆碱受体,需要体外记忆(Venters等,1997; Atamna and Frey,frey,2004; Fawcett等,2004; Fawcett等,2002; Fawcett et al。,2002)。鼻内DFO已显示在动物中,以治疗各种脑部疾病,其中铁会异常积累,甚至可以改善正常和健康小鼠的记忆力(Fine等,2020)。这是重新利用现有药物来治疗PD,AD,中风和其他脑部疾病的一个例子,通过使用非侵入性递送以绕过血脑 - 脑 - 障碍物,并靶向大脑。对DFO作为对神经退行性疾病的潜在治疗的兴趣,鉴于最近认识到,基于不受管制的铁水平的一种调节细胞死亡形式,依赖于神经退行性疾病和神经侮辱的形式(Stockwell,2022222)。 促进铁水平响应的铁凋亡会导致脂质过氧化,活性氧(ROS)产生,线粒体功能障碍以及神经炎性反应导致细胞和神经元损伤(Tang等,2020; Jarrahi等; Jarrahi等; Jarrahi等,2020年)。对DFO作为对神经退行性疾病的潜在治疗的兴趣,鉴于最近认识到,基于不受管制的铁水平的一种调节细胞死亡形式,依赖于神经退行性疾病和神经侮辱的形式(Stockwell,2022222)。促进铁水平响应的铁凋亡会导致脂质过氧化,活性氧(ROS)产生,线粒体功能障碍以及神经炎性反应导致细胞和神经元损伤(Tang等,2020; Jarrahi等; Jarrahi等; Jarrahi等,2020年)。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年3月23日发布。 https://doi.org/10.1101/2024.03.21.585957 doi:Biorxiv Preprint