。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月18日。; https://doi.org/10.1101/2022.05.05.05.02.490309 doi:biorxiv Preprint
哺乳动物脑中的神经元不限于释放单个神经递质,而是通常将神经递质的神经递质释放到突触后细胞上。在这里,我们回顾了整个哺乳动物中枢神经系统中发现的多晶月神经元的最新发现。我们重点介绍了最新的技术创新,这些创新使新的多晶镜神经元及其突触特性的研究成为可能。我们还专注于轴突末端和突触囊泡上神经递质corelease所需的机制和分子成分,以及多种晶状体神经元在多种脑电路中的一些可能功能。我们期望这些方法将导致对多晶镜神经元的机制和功能的新见解,它们在电路中的作用以及它们对正常和病理大脑功能的贡献。
脑干中的逆转录核(RTN)神经元调节对高碳酸高的通气反应。目前尚不清楚Phox2b-多酰氨酸重复突变(PHOX2B -PARMS)如何改变Phox2b和扰动RTN神经元的形成的功能。在这里,我们用人类多能干细胞的RTN样神经元产生了人类脑干器官(HBSO)。单细胞转录组学表明,phox2b+7ala parm的表达改变了后脑神经元的分化轨迹,并阻碍了HBSOS中RTN样神经元的前瞻性。使用无引导的大脑器官(HCO),PHOX2B+ 7ALA PARM中断了刺猬途径和HOX基因失调的Phox2b+神经元的模式。通过互补使用HBSO和HCO与患者和两个突变体在PHOX2B中携带不同多丙氨酸重复的多能干细胞系,我们进一步定义了多苯胺反复的长度与RTN呼吸中心的畸形与RTN呼吸畸形的长度与RTN的畸形与毒素毒素的疾病型模型的潜在模型,并展示了phox2-Persias的潜在模型,该模型构成了phox2b-Parms的强度,该模型繁多了。
控制阿尔茨海默病 (AD) 中神经退行性病变和记忆障碍的诱导和进展的神经回路尚不完全清楚。乳头体 (MB) 是内侧边缘回路的皮层下节点,是 5xFAD 小鼠 AD 模型中第一个出现淀粉样蛋白沉积的大脑区域之一。MB 中的淀粉样蛋白负担与人类死后脑组织中的 AD 病理诊断相关。MB 神经回路是否以及如何导致 AD 中的神经退行性病变和记忆缺陷尚不清楚。使用 5xFAD 小鼠和来自不同程度 AD 病理个体的死后 MB 样本,我们在 MB 中确定了两种具有不同电生理特性和远程投射的神经元细胞类型:外侧神经元和内侧神经元。与野生型同窝仔鼠的外侧 MB 神经元相比,5xFAD 小鼠的外侧 MB 神经元具有异常的过度活跃并表现出早期神经退行性。诱导野生型小鼠外侧 MB 神经元过度活跃会损害记忆任务的表现,而减弱外侧 MB 神经元的异常过度活跃会改善 5xFAD 小鼠的记忆缺陷。我们的研究结果表明,神经退化可能是遗传上独特的投射特异性细胞功能障碍的结果,而失调的外侧 MB 神经元可能与 AD 中的记忆缺陷有因果关系。
✉ 通信和材料索取请发送至 Lan Luan 或 Chong Xie。lan.luan@rice.edu;chongxie@rice.edu。作者贡献 CX 构思并组织了整个研究;ZZ、HZ、XL、LL 和 CX 设计了实验,所有作者均参与其中;ZZ 和 XL 在 CX 的监督下设计和制作了 NET 设备;DFL、JEC 和 LF 与 SpikeGadgets LLC 合作设计了堆叠头戴式记录系统;ZZ 和 XL 在 JEC 和 DFL 的帮助以及 CX 和 LF 的监督下设计了 NET 探头与头戴式记录系统的集成;ZZ 和 XL 在 CX 的监督下开发并执行了手术程序;ZZ、XL 和 HZ 在 LS 和 FH 的帮助以及 CX 和 LL 的监督下进行了动物神经记录实验; HZ 和 ZZ 开发并实施了数据预处理,由 CX 监督,并得到了 JEC 和 LF 的意见;ZZ 和 HZ 执行了数据后分析,由 LL 和 CX 监督,并得到了 LF 的意见;ZZ 执行了组织学研究,由 CX 监督;ZZ、LL 和 CX 撰写并修改了手稿,得到了所有作者的意见。
2.21人脑的血液供应!在基础(a),副乳头(b)和横向(c)脑视图中描绘了脑部前,中部和后脑动脉 - 为脑半球提供血液的三个主要动脉。基底和内颈动脉在大脑的底部形成一个被称为威利斯圆的圆圈。
如今,实验技术使科学家可以访问大量数据。为了从生成这些数据的复杂系统中获取可靠的信息,需要适当的分析工具。卡尔曼滤波器是一种经常使用的技术,可以推断出系统的模型,即从不确定观察结果中的模型参数。最近证明,卡尔曼过滤器的无味卡尔曼过滤器(UKF)的实现,能够推断一组耦合混乱振荡器的连通性。在这项工作中,我们测试UKF是否还可以重建一小组耦合神经元的连通性,而它们的链接是电气突触或化学突触。特别是我们认为Izhikevich神经元,并旨在推断哪些神经元相互影响,将模拟的尖峰列车视为UKF使用的实验观察结果。首先,我们验证UKF是否可以恢复单个神经元的参数,即使参数随时间变化。第二,我们分析了小型神经集合,并证明UKF允许推断神经元之间的连通性,即使是为了异构,有指导性和时间发展的网络。我们的结果表明,在这个非线性耦合系统中,可以进行时间有关的参数和耦合估计。
无机砷在细胞水平上诱发神经毒性的机制尚不清楚。在斑马鱼中,不同浓度的无机砷均有致畸作用。在这里,我们使用了类似浓度的无机砷来评估其对特定神经元类型的影响。受精后 5 小时 (hpf) 的斑马鱼胚胎暴露于亚砷酸钠中,在 72 hpf 幼虫中诱发发育毒性(体长缩短),浓度从 300 mg/L 开始。在 500 mg/L 亚砷酸钠下检测到死亡或明显的形态畸形。虽然 200 mg/L 亚砷酸钠诱导酪氨酸羟化酶阳性(多巴胺能)神经元的发育,但对 5-羟色胺(血清素能)神经元的发育没有显著影响。亚砷酸钠降低了乙酰胆碱酯酶活性。在hb9-GFP转基因幼鱼中,200和400mg/L亚砷酸钠均在脊髓中产生了多余的运动神经元。通过Gant61抑制运动神经元发育所必需的Sonic Hedgehog(Shh)通路,可以阻止亚砷酸钠诱导的多余运动神经元发育。电感耦合等离子体质谱(ICP-MS)分析表明,在200mg/L和400mg/L亚砷酸钠处理下,每只幼鱼平均砷含量分别为387.8pg和847.5pg。数据首次表明无机砷改变斑马鱼幼鱼多巴胺能神经元和运动神经元的发育,后者是通过Shh通路发生的。这些结果可能有助于理解为什么接触砷的人群会患上精神疾病和运动神经元疾病,并且 Shh 可能潜在地充当砷毒性的血浆生物标志物。
1美国密歇根大学,美国密歇根州安阿伯市生物医学工程系,美国美国密歇根州2 Biointerfaces Institute,密歇根大学,安阿伯大学,密歇根州安阿伯市,美国密西西比州48109,美国3神经科学研究生课程,密歇根大学,密歇根大学,密歇根州安阿尔伯,MI 4810 9 48109,美国美国5生物物理学计划,密歇根大学,安阿伯,密歇根州安阿伯市48109,美国6计算机医学和生物信息学系,密歇根州医学,密歇根州安阿伯市,密歇根州安阿伯市48109,美利坚合众国,美国78109美国密歇根大学安阿伯大学,美国密歇根州安阿伯市48109,美国9个细胞与发育生物学系,密歇根大学医学院,安阿伯,密歇根州安阿伯市,美国48109,美国美国∗作者,应与之解决任何信件。1美国密歇根大学,美国密歇根州安阿伯市生物医学工程系,美国美国密歇根州2 Biointerfaces Institute,密歇根大学,安阿伯大学,密歇根州安阿伯市,美国密西西比州48109,美国3神经科学研究生课程,密歇根大学,密歇根大学,密歇根州安阿尔伯,MI 4810 9 48109,美国美国5生物物理学计划,密歇根大学,安阿伯,密歇根州安阿伯市48109,美国6计算机医学和生物信息学系,密歇根州医学,密歇根州安阿伯市,密歇根州安阿伯市48109,美利坚合众国,美国78109美国密歇根大学安阿伯大学,美国密歇根州安阿伯市48109,美国9个细胞与发育生物学系,密歇根大学医学院,安阿伯,密歇根州安阿伯市,美国48109,美国美国∗作者,应与之解决任何信件。
虽然运动技能从出生开始似乎是自然发展的,但实际上是婴儿的早期经历,才真正助长了这一发展。定期经历大量互动的婴儿(例如通过身体上的互动)将从这些互动中发展他们的运动技能。但是,对于那些没有经常互动或经历过幼儿创伤的孩子,其运动神经元建立长期联系的能力降低了,结果他们的发展也是如此。研究发现,儿童不良经历的儿童经历运动技能开发受损的可能性要高出五到七倍。