管制空域被划分为多个区域。航路区域是距离机场至少 50 公里的空域,相关空中交通管制员负责该区域。空中交通管制员必须接受飞机进入其区域;检查飞机,向飞行员发出指令、许可和建议,并将飞机移交给相邻区域或机场。当飞机离开分配给空中交通管制员的空域时,飞机的控制权将移交给控制下一个区域的空中交通管制员(或塔台空中交通管制员)。与许多现实世界的复杂系统一样,这种环境对操作员提出了多个并发要求,事实上,在航路空中交通管制环境中,空中交通管制员面临的系统包括来自不同方向、以不同速度和高度飞往不同目的地的大量飞机 [1]。空中交通管制员有两个主要目标。主要目标是确保管辖范围内的飞机遵守国际民用航空组织 (ICAO) 规定的分离标准。例如,最常见的间隔标准之一要求雷达控制下的飞机垂直间隔至少 1,000 英尺,水平间隔至少 5 海里。次要目标是确保飞机有序、迅速地到达目的地。这些目标要求空中交通管制员执行各种任务,包括监控空中交通、预测间隔损失(i
设计空间的概念起源于问题空间的形成,并且在过去60年中一直是调查和辩论的主题。在信息处理理论的问题空间理论(Newell&Simon,1972)中,基于一般问题解决方案计算机程序(1957年),新约束,子目标和设计替代方案从问题空间中引起的新约束,子目标和设计替代方案会导致外部记忆表现形式的转变,例如模型和图纸,例如,会考虑到问题的变化。问题解决者检索系统,无论是人类还是计算能力系统,都会在搜索解决方案时不断修改和表征问题空间。那时,人们认为井和不确定的问题(Reitman 1964)或结构性不佳的问题(Newell 1969)被认为取决于问题解决者可用的问题解决方法和技术。对问题解决者容量的这种依赖性源于这样的观念,即没有结构性的问题,仅在有限的能力的范围内为解决问题的人(Simon 1973)正式形式化了结构性的问题,并且根据问题的目标,约束和生成的替代方案。一种认知设计理论的替代方法,后来成为反思实践(Schön1983; 1987)。在这种方法中,设计师通过思考和做事,因此知道行动(Argyris等人)(1985),将构建设计世界,并设定问题空间的维度以及他/她试图找到解决方案的举动(Schön,1992)。所处的认知研究方法(Clancey 1997)随后出现了许多与社会科学,行为和动态神经过程有关的学科和目标,以了解知识和行动的观点,并支持学习的想法,即学习发生在做某事时。所在的一词强调,感知机制因果关系将人类认知与环境和行动联系起来。位置涉及内部组织以及内部和外部组织之间发生的因果关系,改变了世界上的事物。新的观察方式和改变世界的改变方式随着时间的流逝而发展。作为一种研究方法,出现了适当的认知披露,以研究设计中的人类认知(Gero 1990)。设计是一种时间和多模式的活动,要求对位置的请求提供适当的解决方案,当这些请求打开时,请在解决问题的阶段发生在解决问题的阶段之前,要求发现问题和问题框架(Runco 1994; Runco和Nemiro,1994)。在过去的40年中,出现了解决问题的空间的替代视图,重点关注变化的最终目的,即解决方案空间。1.1设计空间在理解设计方面的一个有用的抽象是设计空间的概念,设计师探索了可能性的抽象空间(Amstel等人。2016; MacLean等。这两种观点都基于诸如协议分析等方法的设计认知研究(Goldschmidt,2014; Kan&Gero,2017)。虽然受约束的设计空间通常受到特定要求的限制,但开放的设计空间扩展2011)在问题空间内的探索开始,设计过程的问题解决观点(Goel&Pirolli,1992; Goel,1994; Goolschmidt,1997),而其他人则声称设计是通过产生解决方案空间的(Dorst,2019; Dorst&Cross 2001; Dorst&Cross 2001; Gero&Gero&cross&cross&verer&krer&krer&kumar; krer&kumar&kumar&kumar; 2009年;吉川,1981年)。另一种观点是,根据设计请求的限制水平和对创意探索的开放程度,设计空间可以受到限制或开放,这是本文报告的研究重点。
设计本质上受到与人相关的因素的影响,因此,能够测量人类行为的仪器的微调引起了设计领域的兴趣,这并不奇怪。召回的仪器包括各种设备,它们可以捕捉和定量评估人们的无意识和无意识反应,通常被称为神经生理学或生物识别。截至 2016 年 Lohmeyer 和 Meboldt 发表了第一份关于相关措施及其在设计中的解释的报告,这些仪器在设计中的实验应用数量极其有限。在过去几年中,相关出版物的数量急剧增加,这决定了对该领域进行全面审查的机会。对所审查的贡献进行了分析和分类,其中包括所使用的工具、所涉及的利益相关者类型和支持的设计研究活动。生物识别措施相对于传统研究方法的作用也得到了强调。所讨论的工具可以代表传统方法的支持或替代,并且它们能够探索迄今为止无法解决的现象。还讨论了有关生物测量实验的研究强度;最后讨论的一个特别重点是阻止它们在设计研究中变得普遍的障碍的个性化
EOE 和 LST 与消极情绪、焦虑和抑郁有关,而 AES 与积极情绪、开放性经验、尽责性、积极情感和自尊有关 (Liss et al., 2008; Ahadi and Basharpoor, 2010; Sobocko and Zelenski, 2015 )。最初,Aron 和 Aron 将 SPS 概念化为一种分类特征,将 SPS 得分高的人定义为高度敏感人群 (HSP; Aron and Aron, 1997 )。据估计,大约 20–30% 的普通人群具有高度感官敏感性 (Aron et al., 2012; Lionetti et al., 2018; Pluess et al., 2018 )。Lionetti 等人进行的潜在类别分析表明,SPS 得分越高,敏感度越高 (HSPs)。基于两个样本(n = 451 和 n = 540)的 HSPS 结果确定了低、中和高敏感组,分布分别为 29%、40% 和 31%(Lionetti 等人,2018 年)。另外,研究人员提出 SPS 是一种气质特征,其特征是信息处理深度增加、对环境细微差别的意识增强以及易受过度刺激(Aron 等人,2012 年;Homberg 等人,2016 年;Greven 等人,2019 年)。这一概念源自 Gray (1981) 的行为抑制系统 (BIS),该系统涉及暂停以评估对环境条件的反应行为(Gray,1981 年)。因此,HSP 更倾向于在做出决策和采取行动之前仔细分析新情况(Smolewska 等人,2006 年;Sobocko 和 Zelenski,2015 年)。个体的 BIS 越敏感,他们对新刺激就越敏感(Aron 和 Aron,1997 年)。较高水平的 SPS 与焦虑、抑郁和躯体形式障碍等精神疾病有关(Liss 等人,2005 年、2008 年;Bakker 和 Moulding,2012 年;Jonsson 等人,2014 年;Greven 等人,2019 年)。一项检查 SPS 遗传性的双胞胎研究发现,47% 的差异可以用遗传因素来解释(Assary 等人,2021 年)。此外,Aron 等人。 (2005) 发现 HSP 在恶劣环境条件下会表现出负面情感和害羞,这是发展精神疾病的危险因素 ( Aron et al., 2005 )。此外,研究表明,HSP 通常会报告更多的压力体验,因为他们对刺激的感知增强,处理更深。有研究表明,负责过滤掉不相关信息的丘脑过滤器在 HSP 中将更多刺激识别为相关刺激,这可能导致压力增加 ( Benham, 2006; Evans and Rothbart, 2008; Jagiellowicz et al., 2011; Gerstenberg, 2012 )。
摘要:我们旨在确定与由生物力学约束引起的肌肉骨骼疼痛相关的神经生理模式。十二(12)年轻的健康志愿者(两名女性)执行了两项实验逼真的手动任务,分别为30分钟:(1)具有肌肉骨骼疼痛发育的高风险,(2)(2)疼痛的风险较低。在任务中,收集了同步脑电图(EEG)和肌电图(EMG)信号数据,以及疼痛评分。随后,从神经生理信号中计算了两个主要变量:(1)在βeEG频率带(β。trpi)和(2)肌肉变异性的肌肉变异性(β。trpi)中,皮质抑制是作为任务相关的功率增加(TRPI)作为emg信号变异(COV)的肌肉变异性。在执行任务的最后5分钟内,在高风险状态下,在高风险状态下观察到了强大的效果大小;由于肌肉疲劳,因为COV降低了18%。在两种实验条件下,任务第5分钟后,观察到皮质抑制(β.trpi> 50%)的增加。这些结果表明以下神经生理学模式 - β.trpi≥50%和cov≤18% - 可能是监测肩部肌肉骨骼疼痛的可能指标,在重复和长时间暴露于手动任务的情况下。
摘要:背景和目标:近年来,唱歌碗声音干预已逐步应用于健康、治疗和教育领域;然而,其有效性却很少得到研究。因此,本研究旨在确定唱歌碗按摩的神经生理学效应。材料和方法:在这项前瞻性队列研究中,记录了 34 名参与者(平均年龄 36.03 ± 13.43 岁,24 名女性/10 名男性)在接受专业唱歌碗按摩之前、期间和之后的 64 通道脑电图、心电图和呼吸。此外,还评估了幸福感的主观变化。通过确定不同频带的效应大小来分析脑电图数据。通过双尾 t 检验计算出显着差异并进行多重比较校正。估计并比较了心率变异性指标、心率和呼吸频率。结果:与无任务静息状态相比,声音条件下的整体 EEG 功率降低(d = − 0.30,p = 0.002)。干预后,整体 EEG 功率进一步降低(d = − 0.46,p < 0.001),显示 beta 2(d = − 0.15,p = 0.002)和 gamma 频带降低(d = − 0.21,p = 0.004)。干预后,平均心率明显降低(75.5 ± 19.8 vs. 71.5 ± 17.9,p < 0.001),呼吸频率升高(13.5 ± 5.3 vs. 15.2 ± 6.3,p = 0.018)。91.2% 的参与者感觉更加整合,97.1% 更加平衡,76.5% 更加充满活力。结论:唱歌碗声音按摩的神经生理学效应可以解释为转向更专注、冥想的意识状态。干预被认为对健康有益。
结果:本研究中总共包括449名参与者。我们的分析表明,DAN的斜率显着适度,β= -0.00012(95%CI: - 0.00024; - 0.00001,p = 0.040),van的范围为β= 0.00014(95%CI:0.00001; 0.00001; 0.00026; 0.00026; p = 0.031)。此外,我们发现较大的海马体积与改善的记忆性能有关,并且随着DAN活动的降低,直到DAN活动的限制为944.9,这种关联变得更加强大,此后,海马体积不再与单词列表记忆性能显着相关。对于面包车,我们发现,当货车活动较高时,较高的海马体积与更好的记忆性能更加密切。但是,当van活动扩展到-914.6以上时,海马体积不再与单词列表记忆显着相关。
摘要 — 理解神经功能通常需要多种模式的数据,包括电生理数据、成像技术和人口统计调查。在本文中,我们介绍了一种新颖的神经生理模型,以应对多模态数据建模的主要挑战。首先,我们通过解决可变采样率问题来避免原始信号和提取的频域特征之间的不一致问题。其次,我们通过与其他模态的“交叉注意”对模态进行编码。最后,我们利用父变换器架构的属性来模拟跨模态段之间的长距离依赖关系,并评估中间权重,以更好地了解源信号如何影响预测。我们应用多模态神经生理变换器 (MNT) 来预测现有开源数据集中的效价和唤醒。对非对齐多模态时间序列的实验表明,我们的模型在分类任务中的表现相似,在某些情况下甚至优于现有方法。此外,定性分析表明 MNT 能够模拟神经对自主活动的影响以预测唤醒。我们的架构有可能针对各种下游任务进行微调,包括 BCI 系统。
方向绝对相干性利用复相干性函数来计算幅度平方相干性 (Carter 等人,1973 年)、相位斜率指数 (Nolte 等人,2008 年) 和虚相干性 (Nolte 等人,2004 年)。这三个指标结合起来,形成一个可靠的相干性测量指标,该指标取自它们各自的优势,而不考虑各自的弱点。该连接性指标是方向性的,可以检测体积传导,并且静态地绑定到 [-1, 1]。