双语与皮层脑区域的结构适应有关,这些区域对于控制多种语言很重要。然而,对这些适应的位置和程度的研究产生了可变模式,尤其是就皮层区域而言。关于双语诱发的大脑重组的现有文献已经从其他领域中监督了证据,表明基于经验的结构神经可塑性通常会触发遵循扩张 - en呈肾上腺素化轨迹的非线性适应性。在这里,我们使用通用的加性混合模型来研究具有广泛双语体验的双语样本中量化双语体验对基底神经节和丘脑的非线性影响。我们的结果表明,双侧尾状核和伏隔核的体积与双语体验显着相关。重要的是,这些遵循的非线性模式,随后是最有经验的双语者的平稳性,这表明基于经验的体积增加只有最高才能达到一定水平的双语体验。此外,双语经历对ps虫和丘脑的数量进行了积极的预测。结果提供了第一个直接的证据,即双语主义与其他认知要求的技能类似,从而导致动态的皮层结构适应性,这些适应可能是非线性的,这与经验依赖性神经塑性的扩张 - 重生模型一致。
位于言语功能区的动静脉畸形(AVM)患者常出现语言功能障碍,神经可塑性可使部分患者大脑通过功能重组恢复言语功能。探讨AVM引起语言功能重组的机制,对理解神经可塑性、改进临床干预策略具有重要意义。本综述系统检索并分析了近年来相关领域的研究文献,涵盖神经影像学、功能性磁共振成像(fMRI)和临床病例研究等数据,整合这些证据,评估AVM患者非言语功能区功能重组现象及其影响因素。结论:AVM引起的语言功能重组是神经高度可塑性的表现,了解这一过程对神经外科手术规划和患者术后康复具有重要意义。未来的研究应继续探索脑内功能重组的机制,并致力于开发新的诊断工具和治疗方法,以提高AVM患者语言功能的恢复率。
1 Institut Guttmann,Institut Universitari deNeuroorehabilitació,与UAB,巴塞罗那,巴塞罗那,西班牙,2 Universitationatat automnoma de Barcelona,Bellaterra,Barcelath,Spain,3 Fundacio法国蒙彼利埃,5神经外科,医院的科学院,西班牙特内维尔,6基础医学科学系,西班牙特内里费纳大学,西班牙7,医学院医学院,医学院,分别是诺斯特纳学院,巴塞罗那贝拉特拉大学,巴塞罗那,西班牙,贝尔特拉大学,de recercabioMédica学院,八月pi i sunyer(idibaps),巴塞罗那,西班牙,西班牙10中心,deDiaginòsticper deDiaginòsticper la imatgeclínic,医院
除了在病变水平以下的感觉和运动功能丧失外,创伤性脊髓损伤(SCI)还可以减少循环的类固醇激素,这对于维持长时间的正常生理功能所必需的循环类固醇激素。对于每年新的SCI病例中近80%的男性来说,睾丸激素是最丰富的循环性类固醇。SCI通常会导致睾丸激素的产生显着降低,并可能导致慢性低睾丸激素水平。睾丸激素在呼吸功能和呼吸神经可塑性的表达中起作用。当睾丸激素水平较低时,年轻的成年雄性大鼠无法表达长期促进(PLTF),这是急性间歇性缺氧(AIH)引用的一种可诱导的呼吸神经塑性形式。但是,睾丸激素的替代可以恢复这种呼吸神经可塑性。使对该发现的解释变得复杂,是,睾丸激素可能以三种可能的方式发挥其影响:1)通过雄激素受体(AR)激活,2)通过转化为二氢睾丸激素(DHT)(DHT)通过酶5α-雷达斯酶(或3)通过对转换到17b -extem exhorad imor(e2)eNager(dht)。DIV> DHT信号通过AR激活类似于睾丸激素,但具有较高的AR活化,而E2激活了局部雌激素受体。迄今为止的证据支持了以下观点:在低循环睾丸激素的条件下,外源性睾丸激素补充剂通过雌激素受体信号传导发挥其影响。受伤后一周,将大鼠补充E2或DHT 7天。在这里,我们探索了呼吸功能的恢复(用全身气压分散体积学测量),又探索了C2-裂口SCI后雄性大鼠中AIH诱导的PLTF的表达。我们假设E2会增强通风,并在Sci大鼠的AIH之后揭示PLTF。令我们惊讶的是,尽管E2确实有益于C2杀伤后的总体呼吸恢复,但E2补充和DHT均恢复了SCI后2周的AIH诱导的PLTF的表达。
海马是一个大脑区域,具有结构性重组或神经层状城市的能力。它可以快速修改现有的神经回路,甚至可以通过神经发生过程创建完全新颖的神经联系[1]。具体而言,海马的染色回(DG)以其持续生成新神经元的能力而闻名[2]。重要的是,海马的神经遗传潜力似乎对外部刺激具有很高的反应。例如,海马神经发生和神经塑性过程是响应体育活动的促进[3],而压力,酒精和睡眠剥夺会损害它们[4,5]。此外,对老年人的研究表明,海马神经塑性和海马体积的显着降低,与年龄相关的认知下降有关[6,7]。海马体积损失可以在认知障碍前几年[8],而在康复氨基征领域1(CA1)的老年人中,患有轻度认知障碍(MCI)严重损失,预测海马亚领域预测朝着阿尔茨海默氏症的痴呆症的进展[9-13]。已经提出,海马神经遗传学和神经塑性电位受到几种神经营养和炎症标记的调节[14]。在老年人中,一种低级炎症状态,被称为“炎症” [15],被认为会损害海马可塑性[14,16]。随着整个体内炎症,旧细胞和受损细胞的炎症开始释放出炎性细胞因子,例如白介素6(IL-6),进入血液流。这些衰老细胞的数量随着衰老而逐渐增加[17],导致
“错误是神经塑性和学习的基础。这些错误的反馈,到达错误的位置,开始发布许多内容。这包括肾上腺素,增加了警觉性和乙酰胆碱,从而增加了焦点。这就是为什么导致我们退出并走开的挫败感是绝对最糟糕的事情。因为是乙酰胆碱已释放,所以它创造了一个关注误差余量的机会(您正在做的事情与您想做的事情之间的距离),然后神经系统几乎立即开始进行更改,以便尝试正确地进行行为。,当您开始将其稍微正确得多时,该第三个分子被释放出来,即多巴胺,可以使塑料更换非常快。
1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611,2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611,3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611,4 佛罗里达大学生理学与功能基因组学系,佛罗里达州盖恩斯维尔 32611,5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611,6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611,7 佛罗里达大学 J. Crayton Pruitt 家族生物医学工程系,佛罗里达州盖恩斯维尔 32611,8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611,9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611,10 佛罗里达大学神经科学系,佛罗里达大学,佛罗里达州盖恩斯维尔 32611
标题 1 闭环颈部硬膜外刺激在自由活动大鼠脊髓损伤后诱发呼吸神经可塑性 2 3 缩写标题 4 硬膜外刺激诱发呼吸神经可塑性 5 6 作者姓名及所属机构 7 Ian G. Malone 1,2 , Mia N. Kelly 2,3 , Rachel L. Nosacka 4 , Marissa A. Nash 4 , Sijia Yue 5 , Wei Xue 5 , Kevin J. Otto 1,2,6,7,8,9,10 , 8 和 Erica A. Dale 2,4,6 9 1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611 10 2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611 11 3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611 12 4 佛罗里达大学生理学和功能基因组学系,佛罗里达州盖恩斯维尔 32611 13 5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611 14 6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611 15 7 J. Crayton Pruitt Family 佛罗里达大学生物医学工程系,佛罗里达州盖恩斯维尔 32611 16 8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611 17 9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611 18 10 佛罗里达大学神经科学系,佛罗里达州盖恩斯维尔 32611 19 20 通讯作者电子邮件地址 21 电子邮件:ericadale@ufl.edu 22 23 内容信息 24 图表数量:9 25表格数量:0 26 多媒体数量:0 27 字数:28 x 摘要:235 29 x 意义陈述:119 30 x 引言:660 31 x 讨论:2,003 32 33 致谢 34 作者要感谢佛罗里达大学 Dale 实验室、NeuroProstheses 研究实验室和 35 Mitchell 实验室的所有成员提供的技术指导。我们感谢 Raphael Perim 博士、Kaitlynn Olczak 博士和 Yasin Seven 博士提供的技术支持、帮助和指导;感谢 Larry Shupe 博士、Chet Moritz 博士和 Eberhard Fetz 博士提供的 Neurochip3 硬件并协助排除故障;最后,感谢 Jennifer Bizon 博士、Jada Lewis 博士、Peter Sayeski 博士、38 David Fuller 博士、Gordon Mitchell 博士、Charlie Wood 博士和 Stephen Sugrue 博士的支持和指导。 39 40 利益冲突 41 本稿件的作者声明他们没有利益冲突。 42 43 资金 44 这项工作得到了 Craig H. Neilsen 基金会、麦克奈特脑研究所和佛罗里达大学脑 45 和脊髓损伤研究信托基金、NIH T32 HL134621 呼吸研究和治疗培训计划、46 HL147554、NIH U01 NS099700 和佛罗里达大学学者计划的支持。 47 48
本论文由艺术与社会科学研究生院 (GSASS) 在 DigitalCommons@Lesley 免费开放供您使用。它已被 DigitalCommons@Lesley 的授权管理员接受并纳入表达疗法顶点论文。如需更多信息,请联系 digitalcommons@lesley.edu、cvrattos@lesley.edu。
摘要:神经调节的领域缺乏影响可塑性个体差异的预测指标,这些差异会影响对重复的经颅磁刺激(RTMS)的反应。连续的theta爆发刺激(CTB)是一种以其抑制作用而闻名的RTM的形式,显示了个体之间的可变反应,这可能是由于神经可塑性的差异所致。预测单个CTBS效应可以极大地增强其临床和实验效用。本研究探讨了在神经调节之前测量的电动机诱发电位(MEP)输入输出(IO)参数是否可以预测运动皮层对CTB的反应。IO曲线是通过记录在一系列单脉冲TMS强度上的MEP来从健康成年人中取样的,以获得包括MEP Max和S 50(中点强度)在内的参数。后来比较了刺激前后的Moto Cortex及其MEP的相同位置的CTB。MEP Max和S 50都预测了响应,与CTB后10、20和30分钟的个人MEP变化显着相关(P <0.05,R 2> 0.25)。此外,我们介绍并验证了一种易于实现的生物标志物,该标志物不需要全IO曲线的耗时抽样:MEP 130RMT(中位数为10 MEP,在130%RMT)。MEP 130RMT也是CTBS响应的强有力预测指标(P <0.005,r 2> 0.3)。与先前研究的RTMS响应(BDNF多态性)的遗传生物标志物的头对头比较表明,基于IO的预测因子在解释更多响应变异性方面具有出色的性能。关键字:输入输出曲线,CTB,预测变量因此,在CTBS给药之前得出的IO曲线可以可靠地预测CTB诱导的皮质兴奋性变化。这项工作指向RTMS诊断和治疗应用中调整刺激程序的无障碍策略,并可能提高对其他大脑刺激方法的反应率。