神经结构表示是脑图或模型样结构,在结构上类似于它们所代表的内容。这些表示绝对是“认知神经科学革命”的核心,因为它们是与革命者的机械承诺兼容的唯一类型。至关重要的是,这些同样的承诺必须在神经元活性的漩涡中观察到结构表示。在这里,我认为,无论观察的时空尺度如何,我们的神经元活性中都没有观察到结构表达。我的论点首先引入了“认知神经科学革命”(第1节),并勾勒出对结构表现形式的突出,广泛采用的说法(§2)。然后,我将咨询各种在各种时空尺度上描述我们的神经元活动的报告,认为它们都没有报告存在结构表示的存在(§3)。在对我的分析(第4节)偏转了某些直觉异议之后,我将得出的结论是,在没有神经结构表达的情况下,代表性和机制不能融合在一起,因此“认知神经科学革命”被迫放弃其承诺之一(第5节)。
神经结构表示是脑图或模型样结构,在结构上类似于它们所代表的内容。这些表示绝对是“认知神经科学革命”的核心,因为它们是与革命者的机械承诺兼容的唯一类型。至关重要的是,这些同样的承诺必须在神经元活性的漩涡中观察到结构表示。在这里,我认为,无论观察的时空尺度如何,我们的神经元活性中都没有观察到结构表达。我的论点首先引入了“认知神经科学革命”(第1节),并勾勒出对结构表现形式的突出,广泛采用的说法(§2)。然后,我将咨询各种在各种时空尺度上描述我们的神经元活动的报告,认为它们都没有报告存在结构表示的存在(§3)。在对我的分析(第4节)中偏转了某些直觉异议之后,我将得出结论,在没有神经结构表达的情况下,代表性和机制不能融合在一起,因此“认知神经科学革命”被迫放弃其主要承诺之一(§5)。
在小尺度的限制中h→0(更精确,但雄辩的定义较少由(12)提供)。该工具的第一个成功是,它允许丢弃通过FBM在小尺度下对完全发育的湍流速度建模的可能性;实际上,此过程具有线性缩放函数,这不是湍流数据的情况,请参见[32]和Ref。其中。关于对缩放函数提供的信息的理解的关键步骤是由于U. Frisch和G. Parisi在1985年引入的关键思想而获得的[60]:他们将缩放函数的严格凹入性解释为表明所分析函数的点型规律性所赋予的不同值的存在。让我们更加精确:局部界限函数f:r→r的指数定义如下。
认知神经科学的进步通常伴随着我们用来发现大脑功能新方面的方法的复杂性。最近,许多研究已经开始使用大型特征集来预测和解释大脑活动模式。在此范式中,至关重要的重要性是映射模型,它定义了特征和神经数据之间可能关系的空间。直到最近,大多数编码和解码研究都使用了线性映射模型。但是,一些研究人员认为,线性映射的空间过于限制,并主张使用更灵活的非线性映射模型。在这里,我们在三个总体目标的背景下讨论了映射模型的选择:预测准确性,可解释性和生物学合理性。我们表明,与流行的直觉相反,这些目标不会清晰地映射到线性/非线性鸿沟上。此外,我们认为,我们应该旨在估计这些模型的复杂性,而不是将映射模型视为线性或非线性,而不是将映射模型视为线性或非线性。我们表明,在大多数情况下,复杂性可更准确地反映了各种研究目标所施加的限制,并概述了几个可用于有效评估映射模型的复杂度指标。
总而言之,认知控制是一个必不可少的功能,使个人能够有效地调节思想和行动。它由复杂的神经回路支配,主要涉及前额叶皮层及其与其他大脑区域的联系。了解认知控制的神经科学对解决心理健康障碍,改善认知功能并增强整体幸福感具有深远的影响。随着研究的继续,对认知控制机制的新见解可能会导致优化人类认知和行为的创新策略。
教育目标 - 认识到有关自我主题的最新调查,并了解脑成像方法的局限性。- 对神经解剖结构和大脑结构的基本功能进行详尽的综述。- 分析大脑结构和功能以定位自我相关过程 - 自我如何从连接的大脑过程的混合物中出现?- 对自我的神经影像学研究的回顾。了解大脑成像的技术。
神经元和电路的数据驱动模型对于理解膜电导、突触、树突和神经元之间的解剖连接的特性如何产生健康和疾病状态下的脑回路的复杂动态行为非常重要。然而,这些生物过程固有的复杂性使得构建和重复使用生物学详细模型具有挑战性。已经开发了各种各样的工具来帮助构建和模拟它们,但设计和内部表示的差异对那些希望在研究工作流程中使用数据驱动模型的人来说是技术障碍。NeuroML 是一种用于计算神经科学的模型描述语言,它的开发就是为了解决建模工具中的这种碎片化问题。自成立以来,NeuroML 已经发展成为一个成熟的社区标准,涵盖了计算神经科学中的各种模型类型和方法。它促成了一个大型生态系统的开发,该生态系统由可互操作的开源软件工具组成,用于创建、可视化、验证和模拟数据驱动模型。在这里,我们描述了如何将 NeuroML 生态系统纳入研究工作流程,以简化神经系统标准化模型的构建、测试和分析,并支持 FAIR(可查找性、可访问性、互操作性和可重用性)数据原则,从而促进开放、透明和可重复的科学。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。