人类神经科学中最重要的发现之一是识别脑可塑性或神经可塑性。在20世纪的大部分时间里,科学家都认为,成年大脑相对固定,并且在一定年龄之后就无法发生重大变化。但是,在过去的几十年中,研究表明,大脑在一生中保持塑性[2]。神经可塑性是指大脑通过响应学习,经验或伤害形成新的神经联系来重组自己的能力。这一发现为脑损伤和中风后为康复提供了新的可能性,为曾经被认为曾经有不可逆脑损伤的患者提供了希望[3]。
神经可塑性最著名的例子之一是大脑在受伤后自我重组的方式 [5]。例如,在脑损伤的情况下,大脑未受损的区域通常可以通过加强现有神经通路或创建新神经通路来弥补失去的功能 [6]。同样,神经可塑性是技能习得和专业知识的基础,无论是学习一门新语言、掌握一种乐器,还是培养复杂的问题解决能力。一项技能练习得越多,大脑的神经网络就越强,从而提高该技能的表现和效率 [7]。
在过去十年中,单细胞基因组学技术已经实现了可扩展的细胞类型特异性特征分析,这大大提高了我们研究异质组织中细胞多样性和转录程序的能力。然而,我们对基因调控机制或控制细胞类型之间相互作用的规则的理解仍然有限。单细胞表观基因组学和空间分辨转录组学等新的计算流程和技术的出现为探索生物变异的两个新方向创造了机会:细胞内在的细胞状态调控以及细胞之间的表达程序和相互作用。在这里,我们总结了这些领域中最有前途和最强大的技术,讨论了它们的优势和局限性,并讨论了分析这些复杂数据集的关键计算方法。我们重点介绍了数据共享和集成、文档、可视化和结果基准测试如何有助于神经科学的透明度、可重复性、协作和民主化,并讨论了未来技术开发和分析的需求和机会。
慢性下背痛(CLBP)是一种多因素疾病,负担全球医疗保健系统[1,2],导致疼痛,残疾[3],僵硬和对运动的恐惧[4]。大约80%-90%的全球人经历了某种形式的LBP [4,5],这使其成为低收入和中等收入国家寻求医疗保健的最常见原因之一[6]。与颈部疼痛一起,CLBP是一种与总体成本最高[3]相关的医疗状况[3],影响生命的生物学,心理和社会维度[7]。SSYTEMATIC评论[8]和Cochrane评论[9]建议对CLBP的非手术治疗,包括运动疗法和教育[10]。 然而,慢性疼痛是一种复杂的现象,导致中枢神经系统(CNS)变化,挑战CLBP治疗的效果,为分析新的治疗方法提供了机会[11-13]。 慢性肌肉骨骼疼痛患者的最新证据表明,大脑可塑性会诱导中心敏化(CNS过度刺激性),从而改变了疼痛的过程,并创造了疼痛记忆和动力学恐惧症[1,14,15]。 这些中枢神经系统的变化会加剧焦虑,抑郁,压力和疼痛的灾难性[16],导致疼痛,心理问题,避免活动,功能降低,体重增加和持续性疼痛的恶性循环[14]。 疼痛神经科学教育(PNE)[17,18]旨在改变患者对疼痛的概念化,对他们进行疼痛的神经生物学和神经生理学教育,并专注于整体疼痛经历中的特殊性和奇异方差[14-17]。SSYTEMATIC评论[8]和Cochrane评论[9]建议对CLBP的非手术治疗,包括运动疗法和教育[10]。然而,慢性疼痛是一种复杂的现象,导致中枢神经系统(CNS)变化,挑战CLBP治疗的效果,为分析新的治疗方法提供了机会[11-13]。慢性肌肉骨骼疼痛患者的最新证据表明,大脑可塑性会诱导中心敏化(CNS过度刺激性),从而改变了疼痛的过程,并创造了疼痛记忆和动力学恐惧症[1,14,15]。这些中枢神经系统的变化会加剧焦虑,抑郁,压力和疼痛的灾难性[16],导致疼痛,心理问题,避免活动,功能降低,体重增加和持续性疼痛的恶性循环[14]。疼痛神经科学教育(PNE)[17,18]旨在改变患者对疼痛的概念化,对他们进行疼痛的神经生物学和神经生理学教育,并专注于整体疼痛经历中的特殊性和奇异方差[14-17]。最近的系统评价和荟萃分析报告说,PNE有助于减轻疼痛,改善疼痛知识,增强功能,降低残疾和社会心理困扰[19-21]。此外,PNE在体育活动和运动过程中增加了疼痛阈值,并最大程度地减少了医疗保健利用[19 - 21]。研究研究了PNE与各种治疗(例如治疗运动)结合的作用,并具有阳性结果[19]。例如,在改善残疾和疼痛方面,PNE与运动控制训练相结合比核心稳定性训练更有效[22]。这些发现表明PNE具有临床价值,但也表明继续研究与其他类型的运动的重要性[14,16]。在CLBP中,建议各种类型的治疗运动作为治疗方法(例如,强度,拉伸,核心稳定性,麦肯齐,瑜伽和功能恢复)[23,24]。根据Cochrane审查[25],这些练习对CLBP的影响得到了适度的证据确定性的支持。 神经肌肉运动(NMS)代表CLBP的不足区域[26]。 NMS的总体目的是恢复疼痛引起的障碍并增加功能活动,以改善CLBP患者的协调,力量,运动范围和本体感受[27]。 尽管以前的RCT报告了NMS对CLBP的积极作用,显示出腰部肌肉控制,灵活性和力量的改善[27-29],但根据Cochrane审查[25],这些练习对CLBP的影响得到了适度的证据确定性的支持。神经肌肉运动(NMS)代表CLBP的不足区域[26]。NMS的总体目的是恢复疼痛引起的障碍并增加功能活动,以改善CLBP患者的协调,力量,运动范围和本体感受[27]。尽管以前的RCT报告了NMS对CLBP的积极作用,显示出腰部肌肉控制,灵活性和力量的改善[27-29],但
非营利性“神经权利基金会”成立于 2017 年,旨在通过提高公众意识和倡导合乎道德的神经技术来解决这些问题和可能的威胁。作为其使命的一部分,基金会提出了以下五项“神经权利”:“精神隐私权”、“个人身份权”、“自由意志权”、“平等获得精神增强的权利”和“免受算法偏见的权利”。这些权利与个人的正义密切相关,因为它们表明哪些对个人的干预和限制被视为不公正。这必然不仅适用于孤立的个人,也适用于社会政治结构中的所有个人,这突出了团结、共同决定和平等等方面。
10探索因果方面的线索(Mendelian Randomiza 11小胶质细胞衍生的外围单核细胞作为进入大脑的窗口:一种有益的工具,用于理解AUD对CNS的影响。 12淀粉蛋白血管病通过改变脑ad骨 13初步研究:肠道功能<在实验性宫颈脊髓损伤之后。 14个闭环体温调节作物<小鼠睡眠结构的 15低脐带血孕酮预测早产儿的神经认知结果较差。 在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。11小胶质细胞衍生的外围单核细胞作为进入大脑的窗口:一种有益的工具,用于理解AUD对CNS的影响。12淀粉蛋白血管病通过改变脑ad骨 13初步研究:肠道功能<在实验性宫颈脊髓损伤之后。 14个闭环体温调节作物<小鼠睡眠结构的 15低脐带血孕酮预测早产儿的神经认知结果较差。 在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。13初步研究:肠道功能<在实验性宫颈脊髓损伤之后。14个闭环体温调节作物<小鼠睡眠结构的 15低脐带血孕酮预测早产儿的神经认知结果较差。 在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。15低脐带血孕酮预测早产儿的神经认知结果较差。在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。
深度学习在神经科学中的应用具有前所未有的潜力,可以揭示大脑的复杂动态。我们的文献计量分析涵盖了 2012 年至 2023 年,深入研究了深度学习在神经科学中的整合,揭示了进化趋势并确定了关键的研究热点。通过对 421 篇文章的审查,这项研究揭示了跨学科研究的显著增长,其特点是深度学习技术在理解神经机制和治疗神经系统疾病方面的应用蓬勃发展。我们的研究结果的核心是分类算法、模型和神经网络在推动神经科学发展方面发挥的关键作用,突出了它们在解释复杂神经数据、模拟大脑功能以及将理论见解转化为实际诊断和治疗干预方面的功效。此外,我们的分析还描述了主题的演变,展示了从基础方法向更专业和更细致入微的方法的转变,特别是在脑电图分析和卷积神经网络等领域。这种演变反映了该领域的成熟及其对技术进步的适应。这项研究进一步强调了跨学科合作和采用尖端技术对破译大脑密码的创新的重要性。当前的研究为未来的探索提供了战略路线图,敦促科学界向着有突破性发现和实际应用前景的领域迈进。这项分析不仅描绘了神经科学领域深度学习的过去和现在,还阐明了未来研究的道路,强调了深度学习对我们理解大脑的变革性影响。
尽管对艺术治疗工作原理的机械理解仍然有限,但艺术治疗有效性的证据基础仍在不断增长。通过神经科学的视角,增加我们对艺术治疗如何以及为何起作用的理解的一个有希望的途径是。基于神经科学的艺术治疗方法为提高对神经过程的理解提供了机会,这些过程是艺术治疗过程中感知、认知、情感和行为之间复杂相互作用的基础。了解治疗变化如何发生可以改善治疗并为患者带来更好的结果。然而,将艺术治疗和心理学理论直接与神经反应联系起来可能很棘手。这一观点的目的是概述神经可塑性、镜像系统和内感受等神经生物学概念在艺术治疗实践中的当前证据和局限性,并提供有关仍在临床实践中积极使用的过时概念的最新信息。然后,可以使用对当前科学知识库的批判性分析和理解来指导艺术治疗实践,并支持基于假设的研究的发展,以确定推动艺术治疗干预观察到的效果的主要机制。
在神经科学和心理学领域的交汇处进行有趣的探索是由了解“自我”及其心理治疗含义的神经基础的追求所驱动的。这些转化效果与独特的创意艺术疗法(CAT)以及它们与之相关的过程的属性和价值有关。自我被认为是一种多层复杂构造,包括身体和精神成分,主观 - 客观观点,空间和时间维度。神经科学研究,主要是功能性的大脑成像,提出了宪法,自我发展和经验的良好模型,阐明了自我的多个维度如何得到综合的层次结构大脑过程的支持。对艺术形式的心理治疗使用,产生美学体验和创造性过程,触摸并连接自我体验的各个层面,培养自我意识。目前的概念分析将描述并交织的神经机制和神经网络配置,建议含义持续的自我体验,其在心理病理学上的偏差以及对艺术的心理治疗使用的含义。将讨论有关脑功能的良好,简约和神经生物学上合理的预测性处理解释。将进一步描绘经验猫的认知态度,从而实现和促进世界上身体更新的自我模型的创造。将划定关系治疗遭遇的神经心理学影响,并通过交流的言语和非语言手段和审美经验来承认主体间的大脑同步。关于自我嵌套维度的神经科学,现象学和临床观点的识别和同化,基于关系治疗过程以及猫必须在养育,塑造和整合自我的前提上猫的神经塑性调节。
本篇综述探讨了靶向蛋白质降解 (TPD) 这一新兴领域及其在神经科学和临床开发中的有希望的应用。TPD 提供了调节蛋白质水平的创新策略,代表了小分子药物发现和治疗干预的范式转变。重要的是,小分子蛋白质降解剂专门针对中枢神经系统细胞并去除致病蛋白质,而不存在基因组和基于抗体的模式的药物输送挑战。在这里,我们回顾了 TPD 技术的最新进展,重点介绍了具有邻近诱导降解事件驱动和迭代药理学的蛋白水解靶向嵌合体 (PROTAC) 蛋白质降解剂分子,提供了在神经科学研究中的应用,并讨论了将 TPD 转化为临床环境的巨大潜力。