FRPC的回收利用是由于废物(材料混合)的复杂性,消费后产品中的杂质以及用于收集废物收集的非开发基础设施而变得复杂。此外,材料特性通常由于恶劣的回收条件而恶化,并且矩阵或纤维被检索,但很少两者。[7]因此,现有技术的成本很高,回收材料的市场有限。neverther,必须增加FRPC的回收利用,以弥补FRPC市场的可持续性和循环性。,例如,Windeurope是一家500多家公司的财团,出版了一份职位文件,该论文承诺到2025年,以重复使用,回收或恢复100%的退役刀片,叶片废物预先设置为每年约25 000吨,到2025年。[8]
碳材料具有工业应用,原因是它们的特征,例如电导率,化学和热稳定性,轻质重量以及制备成本较低。1 neverther,除了它们的化学量外,直到最近才对碳材料的实际结构进行了充分的文献证明。分析技术的最新发展,用于探测碳材料的结构,例如传输电子显微镜,2-4拉曼光谱,5-7和高感温度的启用方法,8,9对实际的三维(3D)在该碳材料上的碳质量和含量分析的含量有了了解的理解。使用开发的纳米级分析工具,纳米结构材料的合成和理解已扩大了其领域和应用。已经研究了各种合成方法,借助于纳米结构碳材料的晚期纳米结构分析,包括弧排放,10个模板碳化,2,11将石墨烯氧化物的转化为12,13,12,13向其还原的模拟,13,14个有机合成,15,16个拓扑,15,16个拓扑,17-16拓扑,17-19;20-24因此,许多先进的碳材料,包括碳纤维,碳纳米管(CNT),石墨,石墨,结构石墨和碳泡沫的物理化学特性,以改善的物理化学特性,它们以3亿亿美元的年度全球全球范围(cagr)增长率(cagr)增长(cagr)的平均增长率(cagr) 25他们25他们
摘要。在依次连接的细胞之间达到平衡的过程对于预言过度充电或放电至关重要,并且还可以改善总体能量容量。本文讨论了用于在电池管理系统(BMS)中均衡单元充电创建的各种算法。适当的细胞平衡是维护锂离子电池(LIB)包的必不可少的。在BMS中,识别故障至关重要。这涵盖了DECTECT,隔离和估计故障。为了防止电池在不安全的范围内运行,至关重要的是要确保电流,电压和温度传感器的准确功能。准确的故障诊断对于电池管理系统的最佳操作至关重要。在电动汽车电池管理系统的背景下,非常依赖电流,电压和温度的精确测量,以估计充电状态(SOC)和整体电池健康。迅速识别早期失败可以减轻安全危害并最大程度地减少损害。neverther,有效地使用电子车辆的真实操作数据来确定这些初始失败仍然是一项复杂的任务。本文介绍了用于检测与平衡相关故障的不同算法的分析,涵盖了基于模型和不依赖模型的方法的两种方法。在此文档中还讨论了评估算法的优势和缺点,以及在平衡和故障检测领域的即将到来的挑战。