随着生成人工智能的兴起(AI)的兴起,已经涌入了“语音克隆” - 深度学习算法,这些算法会创造出与现实模仿人类声音的综合语音。名人,在特殊的音乐艺术家中,已经在Tiktok和Spotify等社交媒体平台上的AI语音克隆扩散。尽管音乐利用AI语音克隆积累了很多知名度,但这项技术可能对音乐家有害和高度侵略,他们的生计通常取决于他们独特的声音。虽然法律学者试图阐明可以保护一个人声音的各种权利,但个人在很大程度上受到了最小的保护,以防止AI语音克隆,几乎没有任何补救选择。一些法律学者提出了各种侵权行动,可以在此文本中采用。但是,诸如宣传权,诽谤和虚假光线之类的侵权行为最终落后。本说明认为,需要采用拼凑的方法来调节和应对AI语音克隆的危害,包括在州和联邦一级的行动,以及通过流媒体平台和音乐家本身在私营部门中的自我调节。这种方法包括所有受AI语音克隆影响的参与者的意见,应平衡促进创造力和持续发展AI的发展,同时也保护个人对他人的语音和相似性的利益。
参考文献1。GOH WWB,Wong L. NetProt:基于复杂的功能选择。2017年蛋白质组研究杂志; 16(8):3102--3112。2。Guo T,Kouvonen P,Koh CC等。 将组织活检样品快速质谱转化为永久定量数字蛋白质组图,自然医学2015; 21:407-413。Guo T,Kouvonen P,Koh CC等。将组织活检样品快速质谱转化为永久定量数字蛋白质组图,自然医学2015; 21:407-413。
摘要 - 在此简介中,我们提出了一种逐步策略,以准确估计基于硅的多纤维双极晶体管结构中的纤维温度,从常规的调查中。首先,我们在给定的环境温度下提取几乎零动力的自加热电阻(r TH,II(t a))和热耦合因子(C IJ(t a))。现在,通过将叠加原理应用于几乎零功率的这些变量上,其中保留了热扩散方程的线性,我们估计有效的热电阻(r th,i(t a))和相应的修订后的效率温度t i(t a)。最后,Kirchhoff在T I(t a)上的trans形得出每个纤维处的真实温度(t i(t a,p d))。所提出的提取技术自动包括晶体管结构中存在的后端金属层和不同类型的沟渠的影响。该技术是针对具有不同发射极尺寸的双极晶体管的3D TCAD模拟结果验证的,然后应用于从stmicroelectronics B5T技术中从最先进的多纤维sige HBT获得的实际测量数据。可以观察到,原始测量数据在40 mW左右的叠加量低估了真正的纤维温度约10%。
国家温室气体和能源报告 (NGER) 计划 – 2024 年拟议修正案 澳大利亚能源委员会 (AEC) 欢迎有机会向国家温室气体和能源报告 (NGER) 计划 – 2024 年拟议修正案 (“咨询文件”) 提交意见。AEC 是电力和下游天然气企业在竞争激烈的批发和零售能源市场中运营的最高行业机构。AEC 成员为超过 1000 万户家庭和企业生产和销售能源,是可再生能源发电的主要投资者。AEC 支持到 2050 年实现净零排放,到 2035 年实现 55% 的减排目标,并致力于实现能源转型,造福消费者。保持 NGER 计划等排放报告框架的稳健性非常重要,这样才能让声称减排的公司能够可靠地核实这些声明,以及让监管机构和民间社会能够进行适当审查。澳大利亚选举委员会普遍支持 DCCEEW 提出的修正案,并认为这些改革应能更好地与国际标准和近期国内政策保持一致,即气候相关披露框架和原产地保证认证计划。在实施这些改革时,该部门应注意一些事项,澳大利亚选举委员会已在下文中重点介绍了这些事项。露天煤矿:逐步淘汰方法 1 如咨询文件中所述,自 2025 年 7 月 1 日起,保障机制所涵盖的露天煤矿“报告称 2023 财年开采了超过 1000 万吨原煤”,则必须使用方法 2 或 3 估算露天矿的逸散甲烷排放量。自 2026 年 7 月 1 日起,保障机制下的所有其他设施同样也需要使用方法 2 或 3 估算逸散甲烷排放量。根据这些修订,非保障机制设施仍可使用方法 1。事实上,由于拟议的变更导致使用方法 2 的矿井数量增加,这将产生更多、更准确的逸散排放数据。这可用于提高方法 1 中使用的排放因子 EFj(NGER 报告确定的 3.20)的准确性,从而减少将小型矿井(非保障机制设施)从方法 1 转移到方法 2 的需要/好处。
纤维的快照已被用作跨人类文化的数千年的一种交流和音乐形式。但是,尚未对这种快速运动的动力学进行系统分析。使用高速成像和力传感器,我们分析了纤维快照的动力学。我们的分析揭示了皮肤摩擦在介导SNAP动力学中的核心作用,通过充当控制所得高速度的闩锁。我们通过用不同的材料覆盖拇指和中纤维,以产生不同的摩擦系数和不同的可压缩性来评估这种摩擦闩锁的作用。在这样做时,我们揭示了纤维垫的可压缩摩擦闩锁可能在最佳调整的摩擦和压缩方案中运行。我们还开发了一种柔软的,可压缩的摩擦的闩锁介导的春季驱动(LAMSA)模型,以进一步阐明摩擦的关键作用及其与可压缩闩锁的相互作用。我们的数学模型表明,摩擦在纤维扣中起着双重作用,既有助于载荷,也可以在阻碍能量释放的同时进行储能。我们的工作揭示了如何将表面之间的摩擦作为可调的闩锁系统利用,并为许多机器人技术和超快速的能量释放结构的摩擦复杂性提供了设计见解。
PHD(植物同源域)纤维蛋白作为癌症生物学中的中央表观遗传学读物和调节剂出现,策划了与肿瘤发生和抑制肿瘤的广泛细胞过程。本综述描述了PHD纤维在癌症中的二元论作用,突出了它们参与染色质重塑,基因表达调节以及与细胞信号网络的相互作用。phdfingers解释特异性组蛋白修饰的能力强调了它们对基因表达模式的影响,从而影响了与癌症相关的关键过程,例如细胞增殖,DNA修复和凋亡。审查涉足某些PHD纤维蛋白的致癌潜力,以PHF1和PHF8为例,这些蛋白会通过表观遗传失调和WNT和TGFβ的信号传导途径的调节来促进肿瘤进展。相反,它讨论了PHDFINGER蛋白(例如PHF2)和ING家族成员的肿瘤抑制功能,这些功能维持基因组稳定性并通过与染色质和转录调节剂的相互作用来抑制肿瘤的生长。此外,考虑到它们在调节癌症干细胞中的关键作用并影响对癌症治疗的免疫反应,探索了靶向癌症治疗中Phdfienger蛋白的治疗潜力。通过对当前见解的全面综合,这篇评论强调了癌症生物学中Phd -Finger蛋白的复杂但有希望的景观,主张进一步研究以解锁新的治疗途径,以利用其独特的细胞作用。
为了感知环境中的对象并互动,我们毫不费力地在所需的位置配置了我们的figertips。因此,可以合理地假设潜在的控制机制依赖于有关我们的手和纤维的结构和空间维度的准确知识。然而,这种直觉受到了多年的研究挑战,表明纤维几何学的感知中存在巨大的偏见。1–5这种感知偏见被视为证据表明大脑对人体的内部表示被扭曲,6导致了关于我们行为熟练的明显悖论。7在这里,我们对手工感知的偏见提出了另一种解释,这是噪音的贝叶斯整体的结果,但是关于纤维几何和姿势的无偏见,无偏的体感信号。为了解决这一假设,我们将贝叶斯反向工程与索引填充剂的关节和填充定位进行的行为实验相结合。,我们以感觉或在空间坐标中对贝叶斯的整合进行了建模,表明后一种模型变体导致了纤维感知的偏见,尽管有准确表示纤维长度。关节和纤维化定位响应的行为度量显示出相似的偏见,这些偏见是由空间基的,但不是基于感觉的模型变体所填充的。空间模型变体还优于具有内置几何偏差的失真手模型。总的来说,我们的结果表明,纤维几何形状的感知失真不会反映扭曲的手模型,而是源自几乎最佳的贝叶斯对体感信号的推断。
尽管用于恢复运动功能的脑机接口技术发展迅速,人们对此也产生了浓厚的兴趣,但假手指和假肢的性能仍无法模仿自然功能。将脑信号转换为假肢控制信号的算法是实现快速逼真的手指运动的限制因素之一。为了实现更逼真的手指运动,我们开发了一个浅层前馈神经网络来解码两只成年雄性恒河猴的实时双自由度手指运动。使用两步训练方法,引入重新校准的反馈意图训练 (ReFIT) 神经网络以进一步提高性能。在对两只动物进行 7 天的测试中,神经网络解码器的手指运动速度更快、更自然,与代表当前标准的 ReFIT 卡尔曼滤波器相比,吞吐量提高了 36%。这里介绍的神经网络解码器展示了优于当前最先进水平的连续运动的实时解码,并可以为使用神经网络开发更自然的脑控假肢提供一个起点。