沿进化量表相对有选择地移动纤维的能力增加了。,即使在人类中,当一个数字移动时,其他数字也会移动。意想不到的数字运动的部分原因是手的生物力学及其肌肉的生物力学,部分原因是控制纤维的神经系统。这些神经系统每个都包含许多单个神经元,这些神经元的输出在多个肌肉的脊髓运动神经元库中有差异。由于这些因素会导致运动的运动,因此动力学家移动任何给定的数字的收缩伴随着其他肌肉的收缩,以稳定其他数字和手腕。主要运动皮层(M1)主导着对人类自愿运动的控制,与其他支付的系统一起起作用,以雕刻激动剂,拮抗剂和稳定肌肉的协调作用。在任何手机运动中,神经活动都分布在宽的M1领域,该区域与其他纤维运动过程中的区域广泛重叠。因此,皮质病变永远不会损害仅一位数字的功能。M1或皮质脊髓道的病变损害相对选择性或“个性化”的延伸纤维运动,而不是浮雕。单独的机制可能是强度与个性化的基本恢复。
ISO avones是由豆类产生的一类二级代谢产物,在人类健康和植物胁迫耐受性中起重要作用。 C2H2锌 - 纤维转录因子(TF)在植物胁迫耐受性中的功能,但对其在大豆(Glycine Max)中的异含量反应中的功能知之甚少。 在这里,我们报告了一个C2H2锌 - 纤维TF基因GMZFP7,该基因调节大豆中的Iso avone积累。 过表达的GMZFP7增加了跨基因根和植物中的ISO avone浓度。 相比之下,沉默的GMZFP7表达显着降低了同avone水平。 代谢组和QRT-PCR分析表明,GMZFP7可以增加苯基丙烷途径的频率。 此外,双 - 荧光酶和电泳动物移动分析测定法表明,GMZFP7通过侵入ISO纤维抗酮合酶2(GMIFS2)(GMIFS2)和3 B-氟酮3 B-羟基酶1(gmff3h1)来调节ISO avone的积累。 在这项研究中,我们证明了GMZFP7通过对竞争性苯基丙烷途径分支的Gateway酶(GMIFS2和GMF3H1)的表达来表达来导致ISO弹药积累,以将代谢流将代谢流引导到ISOOFONE中。 单倍型分析表明,GMZFP7启动子中存在重要的自然变化,P-HAP1和P-HAP3是精英单倍型。 我们的发现提供了有关GMZFP7如何调节苯基丙烷途径并增强大豆ISO avone含量的洞察力。ISO avones是由豆类产生的一类二级代谢产物,在人类健康和植物胁迫耐受性中起重要作用。C2H2锌 - 纤维转录因子(TF)在植物胁迫耐受性中的功能,但对其在大豆(Glycine Max)中的异含量反应中的功能知之甚少。在这里,我们报告了一个C2H2锌 - 纤维TF基因GMZFP7,该基因调节大豆中的Iso avone积累。过表达的GMZFP7增加了跨基因根和植物中的ISO avone浓度。相比之下,沉默的GMZFP7表达显着降低了同avone水平。代谢组和QRT-PCR分析表明,GMZFP7可以增加苯基丙烷途径的频率。此外,双 - 荧光酶和电泳动物移动分析测定法表明,GMZFP7通过侵入ISO纤维抗酮合酶2(GMIFS2)(GMIFS2)和3 B-氟酮3 B-羟基酶1(gmff3h1)来调节ISO avone的积累。在这项研究中,我们证明了GMZFP7通过对竞争性苯基丙烷途径分支的Gateway酶(GMIFS2和GMF3H1)的表达来表达来导致ISO弹药积累,以将代谢流将代谢流引导到ISOOFONE中。单倍型分析表明,GMZFP7启动子中存在重要的自然变化,P-HAP1和P-HAP3是精英单倍型。我们的发现提供了有关GMZFP7如何调节苯基丙烷途径并增强大豆ISO avone含量的洞察力。
ZBTB7A属于一小部分转录因素,该因子在人类中有三个成员(7a,7b和7c)。他们在氨基端具有BTB/POZ蛋白相互作用结构域,在羧基端具有一个锌 - 纤维DNA结合域。他们控制着各种基因的转录,这些基因在造血,肿瘤发生和元质体(尤其是糖酵解)中具有不同的功能。ZBTB7A结合纤维包含共识g(A / C)CCC基序,在某些情况下以CCCC序列为止。的结构和突变研究表明,DNA特异性接触ZBTB7A的四纤维串联阵列是顺序形成的,是从ZF1 - ZF2结合到G(A / C)CCC(a / c)CCC的结合,然后扩散到ZF3 – ZF4之前的ZF2 - ZF2结合,该ZF3 – ZF4与DNA Backbone和3 0 CCC的结合。在这里,我们研究了在ZBTB7A DNA结合结构域内发生的T(8; 21) - 阳性急性髓样白血病患者中发现的一些突变。我们确定这些突变通常会损害ZBTB7A DNA的结合,最严重的破坏是由ZF1和ZF2突变引起的,而ZF3中的Frameshift突变最少,导致部分错误定位。在ZBTB7A上提供的信息 - DNA相互作用可能适用于ZBTB7B/C,它们在控制主要代谢时与ZBTB7A具有重叠的功能。
文献 E. W. Dijkstra:协作顺序进程。收录于:F. Genys(编辑),《编程语言》,Academic Press,纽约(1968)43-112 P. B. Hansen,《Java 的不安全并行性》,ACM SIG-PLAN 通知,(4)23(1999)38-45。C. A. R. Hoare:监视器:操作系统结构概念,《ACM 通讯》,(10)17(1974),549-557。C. A. R. Hoare:通信顺序进程,《ACM 通讯》,(8)21(1978),666-677。D. Lea:Java 并发编程 - 设计原则和模式,Java 系列,Addison-Wesley,马萨诸塞州雷丁,第 2 期。Auflage (2000)。J. Magee、J. Kramer:并发 - 状态模型和 Java 程序,John Wiley & Sons,西萨塞克斯,第 2 期。Auflage (2006)。B. Sanden:应对 Java 线程,IEEE 计算机,(4) 37 (2004),20-27。B. Goetz:Java 并发实践,Addison-Wesley,新泽西州上萨德尔河 (2006)。T. Rauber, G. Rünger:Parallele Programmierung,Springer-Verlag,柏林,海德堡,2。Auflage (2007)。
本报告还得到了以下人员的咨询帮助:Ibrahim Togola (Access)、Giuseppe Buscaglia (Acra Lumama)、Tom Price (All Power Labs)、Ashok Chaudhuri (Ankur Scientific Energy Technologies Pvt. Ltd.)、Mike Bergey (Bergey Windpower Co.)、Rachel Child 和 Benjamin Hugues (Camco Clean Energy)、Balthasar Klimbie (Clear Resource)、Fabio De Pascale (Devergy)、Mady Mbodji (ENERSA)、Chris Service 和 Caroline Nijland (Foundation Rural Energy Services)、Sandeep Giri (Gham Power)、Sameer Nair (Gram Oorja)、Leo Schiefermüller (JUMEME)、Brian Shaad (Mera Gao Power)、Vijay Bhaskar (Mlinda Foundation)、Rajesh Manapat (OMC)、Dipendra Bhattarai (Practical Action)、Asma Huque (PSL/PGEL)、Vivian Vendeirinho (RVE Sol)、Rin Seyha (SME 可再生能源有限公司)、Didar Islam (SolarIC)、Andy Schroeter (Sunlabob)、Adrian Banie Lasimbang (Tonibung) 和 Stefan Gsänger (WWEA)。
我们感谢以下审阅者和/或提供反馈和指导的人员:Muhammed Mustafa Amjad(可再生能源优先)、Cristina Amorim(Climainfo)、Marion Bachelet(欧洲气候基金会)、Jan Burck(德国观察组织)、Marie Cosquer(反饥饿行动)、Elizabeth Wangeci Chege(SEForAll)、Stefan Gsänger(世界风能协会)、Jan Kowalzig(乐施会)、Tatiana Lanshina(Agora Energiewende)、Emi Mizuno(SEForAll)、Janet Milongo(CAN International)、Koaile Monaheng(CAN International)、Tomas Kåberger(可再生能源研究所和查尔姆斯理工大学)、Divyam Nagpal(SEForAll)、John Nordbo(CARE)、James Norman(全球能源监测)、Chandelle O'Neil(国际学生环境联盟)、Sean Rai-Roche(E3G)、David S. Renné(国际太阳能社会)、Elifadhili Shaidi(CAN 坦桑尼亚)、Shruti Shukla(自然资源保护委员会)、Stephan Singer(CAN 国际)、Rebecca Thissen(CAN 国际)、David Tong(Oil Change International)、Thea Uhlich(德国观察)、Shreeshan Venkatesh(CAN 国际)和 Sherpard Zvigadza(南非 CAN)。
• Carlos Abellan,Quside • Francesco Battistel,Qblox • Michael Bauer,Eviden • Xenia Bogomolec,Quant-X • Thierry Botter,QuIC • Simone Capeleto,ThinkQuantum • Emilia Conlon,Riverlane • Elif Kiesow Cortez,Ethicqual • Thierry Debuisschert,Thales • Eliott Doutriaux,Alice & Bob • Marta Estarellas,Qilimanjaro • Muhammad Nabil Faradis,剑桥大学 • Martin Farnan,Equal1 • Benjamin Frisch,CERN • Franz Georg Fuchs,SINTEF • Alberto García García,埃森哲 • Helmut Griesser,Adva Network Security • Robert Harrison,Sonnenberg Harrison • Wilhelm Kaenders,TOPTICA Photonics • Anna Kaminska,Creotech • Martin Knufinke,Eviden • Jasper Krauser,空中客车 • Thomas Länger,Nutshell Quantum-Safe • Wolfgang Lechner,ParityQC • Enrique Lizaso,Multiverse Computing • Glenn Manoff,Riverlane • Maria Maragkou,Riverlane • Eva Martín Fierro,Qilimanjaro • Luigi Martiradonna,Riverlane • Ziad Melhem,Oxford Quantum Solutions • Agnes Meyder,Roche • Hassan Naseri,Accenture • Clara Osorio Tamayo,TNO • Homer Papadopoulos,Syndesis • Cécile Perrault,Alice & Bob
• 位于加拿大大西洋地区最大城市的市中心,靠近其他与海洋相关的活动和专业知识 • 位于哈利法克斯港,世界第二大天然港口,全年都有商业、休闲和军用船只通航 • 可直接进入港口,码头表面长 2,850 英尺,配有两个指形码头和小船设施 • 水深可达 50 英尺 * 2 英亩用于堆放区域和外部存储区 * 现场提供停车位 • 安全、有围栏的院落 • 大型港口城市成熟的海洋基础设施和服务 • 方便前往社区和便利设施,包括贸易和供应商 • 可前往步行道、道路、渡轮和地面交通