图2 NHS对ATP动力学的影响。 (a)NHS诱导1(代表n = 6)的二聚化。 (b)暴露于NHS(1μm)viatmrm(20 nm)荧光的SH-SY5Y细胞中的Δψm评估。 (c)条形图量化线索 - 膜电位(Δψm)。 数据显示为平均值±SEM(n = 14)。 * p <0.05,如所示。 (d - e)由Liuminometer记录的代表性痕迹在用线粒体靶向(MIT)和凝结核酸(Cyt)荧光素酶转染的SH-SY5Y细胞中,并用荧光素(100μm)灌注。 在高原上,将用NHS(1μm)挑战细胞,并监测动力学(n = 9)。 (F - G)SH-SY5Y细胞被PGIPZ GFP标记的载体稳定转染(如第2节所述),如果通过(F)中的Western blot分析确认了1个下调。 (g)条显示了1个表达的变化,将1个表达归一化为β-肌动蛋白水平,并表示为平均值±SEM(n = 9)。 * p <0.05,如所示。 (H)响应NACN和IAA处理的MGG荧光变化的代表性痕迹。 (i)条显示了在NaCN(1 mM)和IAA(2 mM)存在下,用NHS1μm处理18-H处理后对应于ATP耗竭的MGG荧光的变化。 数据归一化为未处理的细胞,并表示为平均值±SEM(n = 11)。 * p <0.05,如所示。 * P <0.05,如所示明显不同图2 NHS对ATP动力学的影响。(a)NHS诱导1(代表n = 6)的二聚化。(b)暴露于NHS(1μm)viatmrm(20 nm)荧光的SH-SY5Y细胞中的Δψm评估。(c)条形图量化线索 - 膜电位(Δψm)。数据显示为平均值±SEM(n = 14)。* p <0.05,如所示。(d - e)由Liuminometer记录的代表性痕迹在用线粒体靶向(MIT)和凝结核酸(Cyt)荧光素酶转染的SH-SY5Y细胞中,并用荧光素(100μm)灌注。在高原上,将用NHS(1μm)挑战细胞,并监测动力学(n = 9)。(F - G)SH-SY5Y细胞被PGIPZ GFP标记的载体稳定转染(如第2节所述),如果通过(F)中的Western blot分析确认了1个下调。(g)条显示了1个表达的变化,将1个表达归一化为β-肌动蛋白水平,并表示为平均值±SEM(n = 9)。* p <0.05,如所示。(H)响应NACN和IAA处理的MGG荧光变化的代表性痕迹。(i)条显示了在NaCN(1 mM)和IAA(2 mM)存在下,用NHS1μm处理18-H处理后对应于ATP耗竭的MGG荧光的变化。数据归一化为未处理的细胞,并表示为平均值±SEM(n = 11)。* p <0.05,如所示。* P <0.05,如所示(j和k)然后,用NHS1μM处理后,根据(J)NaCn或(K)IAA评估MGG荧光的增加。
规划办公室 IV 1 (3) 部门主管,概念开发和实验,Taufkirchen 和培训飞行器操作员 HERON 1
注意:下表总结了 UIC 00211 下库存记录中维护的建筑物。B ~ D C L NRTC GLAKES、UIC 45009 和 BRKEDCL NTC GLAKES、UIC 32579 包含在此摘要中,因为这些设施是 UIC 00211 下记录的 I1 类不动产资产。BRMEDCL NRTC-IN GLAKES、UIC 45009 是 I1 类不动产资产。记录在 UIC 00210 下。BRMEDCL MCSA KANS CITY、UIC 47522 和 BRMEDCL CLEVELAND、UIC 46387 使用 GSA 租赁空间;因此,没有维护不动产记录。
R&S®Sx800 激励器包括针对模拟视频/音频输入信号和数字传输流的完整数字信号处理功能,并确保精确调制到所需的输出通道。所使用的电路和算法 100% 由罗德与施瓦茨公司生产,以确保长期的最高质量和灵活性。激励器宽度为 19 英寸,高度仅为一个单位,非常紧凑。R&S®Sx800-K5 自动自适应预校正选项可补偿放大器和输出滤波器中的线性和非线性失真,从而允许在数字发射机网络中简单快速地安装和调试。
18.25 - 19.55 晚宴 (Beneluxzaal) 19.55 - 20.25 颁奖典礼 (Beneluxzaal) 20.25 - 21.10 全体演讲:Elisabeth Bik (Beneluxzaal) 21.10 - 00.30 节日晚会 (Brabantzaal)
18.25-19.55晚餐(贝纳克斯扎尔)19.55-20.25颁奖典礼(贝纳克斯扎尔)20.25-21.10全体讲座:伊丽莎白·比克(Elisabeth Bik
• 到本世纪末,夏季平均气温可能比 1980 年至 2009 年的历史平均气温高出 11°F。极端热浪也可能变得更加频繁,给人类健康、基础设施和电网带来额外压力。• 当地影响包括干旱• 市政府认识到,由于气候变化导致极端降水频率和强度增加,将加剧雨水径流和携带许多最令人担忧的污染物(包括细菌、氯化物、沉积物和营养物)的沙砾悬浮固体。• 渗透是一种低影响的补充地下水的方式,而不是将径流直接输送到地表水体。• 气候变化将导致气温升高,这会增加地面臭氧的形成,并可能随着空气质量差的天数而增加。• 随着气温升高,夏季热浪将变得更长、更频繁。面对这些更长的炎热时期以及人口增加和需求不断增长,区域电网和能源供应商将面临提供足够电力的挑战。极端高温时期还会降低发电厂的效率,给系统带来额外压力,尤其是在电力需求最高的时候。多佛最城市化的地区,即市中心,可能会出现城市热岛效应(由于人类活动,城市地区比周围的农村地区温度高得多)。这会给在那里生活和工作的人们带来额外的压力。• 服务不足和脆弱的人群——包括低收入者和家庭、老年人和残疾人——可能对气候变化相关的影响更为敏感。• 在市中心景观和其他市属物业中种植更多树木和本地植被,同时保留成熟的树木,以便通过提供遮荫来帮助降低地表和空气温度。
摘要:单壁碳纳米管(SWCNTS)的捆绑显着破坏了它们的出色热和电性能。意识到稳定,均匀和表面活性剂 - 在溶剂和复合材料中的swcnt散发体长期以来一直被视为一个关键挑战。在这里,我们报告了含胺的芳香族和环己烷分子,这些分子是环氧固化的常见链扩展器(CES),可用于有效分散CNT。我们实现了CE溶剂中SWCNT的单管级分散,这是通过强性手性吸收和光致发光发射所证明的。SWCNT-CE分散体在环境条件下保持稳定数月。The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH − π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is con fi rmed by the negative Seebeck coe ffi cient of the CE-functionalized SWCNT fi lms, the red shift of the G band in the Raman spectra, and the NH X射线光电子光谱中的−π峰。CES的高配置显着改善了宏观CNT组件的电气和热传输。通过HNO 3的功能修改后,在80.8%的光透射率下,CE分散的SWCNT薄膜的板电阻达到161Ω平方-1。CES交联CNT和环氧分子,在CNT/环氧纳米复合材料中形成了声子传输的途径。基于CE的NH-π相互作用为SWCNT在方便而可扩展的过程中的有效和稳定分散提供了新的范式。与原始环氧树脂相比,CE -CNT-环氧复合材料的热导率增强了1850%,这是CNT/Epoxy纳米复合材料迄今据报道的最高增强。关键字:碳纳米管,分散,电荷转移,热界面材料,透明电极,功能化■简介
有机 - 无机杂种钙钛矿(OIHP)已被证明是有希望的非易失性记忆的活动层,因为它们在地球,移动离子和可调节的尺寸中的丰富丰度。但是,缺乏对一维(1D)OIHP的可控制造和存储特性的研究。在这里,报告了1D(NH = CINH 3)3 PBI 5((IFA)3 PBI 5)钙钛矿和相关的电阻记忆特性。溶液处理的1D(IFA)3 PBI 5晶体具有良好定义的单斜晶相和长度约为6 mm的针状形状。它们表现出3 eV的宽带隙,高分解温度为206°C。此外,使用N,N-二甲基甲酰胺(DMF)和Dimethyl Sulfoxide(DMSO)的双溶剂获得了具有良好均匀性和结晶的(IFA)3 PBI 5薄膜。研究了这种各向异性材料的内在电性能,我们构建了仅由Au /(IFA)3 PBI 5 /ITO组成的最简单的存储单元,该电池构成了带有横式阵列设备构造的高型设备。电阻随机访问存储器(RERAM)设备具有双极电流 - 电压(I-V)磁滞特性,显示了所有基于OIHP的新闻器的记录低功耗〜0.2 MW。此外,我们的设备拥有最低的功耗和“设置”电压(0.2 V),其中最简单的基于钙钛矿的存储器设备(也包括无机设备),这不需要需要双金属电极或任何其他绝缘层。他们还表现出可重复的电阻切换行为和出色的保留时间。我们设想1D OIHP可以丰富低维杂种钙钛矿库,并为内存和其他电子应用程序领域中的低功率信息设备带来新的功能。
摘要 利用 H 2 /NH 3 的反应离子束蚀刻 (RIBE) 系统蚀刻磁隧道结 (MTJ) 材料,例如 CoFeB、Co、Pt、MgO,以及硬掩模材料,例如 W 和 TiN。与使用纯 H 2(无蚀刻)和 NH 3 的蚀刻相比,使用 H 2 和 NH 3 的混合气体,尤其是 H 2 /NH 3 (2:1) 比例,可以观察到 MTJ 相关材料的更高蚀刻速率和相对于掩模材料的更高蚀刻选择性 (>30)。此外,在蚀刻的磁性材料表面上没有观察到明显的化学和物理损伤,对于通过 H 2 /NH 3 (2:1) 离子束蚀刻的 CoPt 和 MTJ 纳米级图案,可以观察到高度各向异性的蚀刻轮廓 >83 ◦,没有侧壁再沉积。与 H 2 离子束或 NH 3 离子束相比,H 2 /NH 3 (2:1) 离子束对磁性材料(如 CoFeB)的蚀刻速率更高,这被认为与挥发性金属氢化物(MH,M = Co、Fe 等)的形成有关,这是通过暴露于 NH 3 离子束中在 CoFeB 表面形成的 M-NH x(x = 1 ∼ 3)的还原形成的。人们认为,H 2 /NH 3 RIBE 是一种适用于蚀刻下一代纳米级自旋转移力矩磁性随机存取存储器 (STT-MRAM) 设备的 MTJ 材料的技术。