摘要:对英国遍布医院的爆发的肺炎(K.肺炎)培养,持续了12个月以上。我们试图对爆发菌株进行序列和遗传表征。抗生素敏感性测试(AST)是在从暴发中保存的65 k肺炎分离株上进行的。使用牛津纳米孔技术(ONT)奴才流循环对所有分离株进行了测序:10个分离株,包括2017年最早收集日期的分离株,在Novaseq 6000平台上还测序,以构建高准确性纳米孔 - 小颗粒组件。在测序菌株中,60个键入ST628。96.6%(n = 58/60)ST628菌株具有大约247-kb fib(k)质粒,含有多达11种抗微生物抗性基因,包括扩展的谱β-内酰胺氨基氨基氨基氨基氨基酶(ESBL)基因,BLA CTX-M-15。使用单核苷酸多态性(SNP)键入爆发分离株之间的克隆性。暴发菌株在爆发前6年的2012年与临床ST628菌株有关。在持久的医学医学医学爆发期间,在多个独立的病房中检测到了具有多药抗药性(MDR)质粒的稀有ESBL K.肺炎K2 ST628菌株。建议对这种菌株进行监视,以防止未来的医院暴发。
简介:这项研究旨在研究支原体肺炎(MP) - MP肺炎(MPP)儿童支气管肺泡灌洗液(BALF)中的DNA负荷及其亚型及其亚型的肺炎及其相关的实验室数据,成像,成像儿童及其临时临床的复杂性,并进行了临床临床的临时,并进行了临床。方法:在2017年12月至2020年12月之间在天津儿童医院住院的儿童被选为研究,不包括病毒,细菌和真菌感染的混合病毒。使用实时定量荧光聚合酶链反应(PCR),根据BALF中的MP DNA负载将儿童分为低负载组。成功的MP培养后,阳性样品受到PCR限制片段长度多态性和多级别可变数字串联重复分析键入键入。从研究中包括的所有儿童收集了基本数据,临床信息,实验室数据和放射学结果。结果:PI-I类型主导了不同的负载组。低负荷群体中的儿童喘息和呼吸急促。然而,高负荷组的儿童住院时间更高,最高发烧温度,更高的寒冷/寒冷,腹痛的发生率以及较高的C反应蛋白(CRP),procalcitonin(PCT)和天冬氨酸氨基转移酶(AST)水平。高负载组中的儿童更可能发生成像变化,例如胸腔积液,呼吸道感染和肺外并发症的发生率高于低负载组中的呼吸道感染。我们应用了Spearman的相关分析来阐明MP DNA负载与MPP的临床严重程度之间的关系。我们发现,MP DNA负荷与住院时间,最高发烧温度,CRP,PCT,白介素6(IL-6)和AST水平正相关,并且与发烧和咳嗽持续时间,白细胞计数(WBC)以及单一细胞(MONOO)(MONOO)的比例负相关。相关程度如下:住院时间> IL-6>咳嗽持续时间> AST> AST>发烧持续时间> PCT> WBC>单声道>最高发烧温度> CRP水平的比例。结论:MP DNA负荷与MP键入无关,但与儿童的临床表型显着相关。因此,MP DNA负荷有助于早期诊断感染,并可以更好地预测疾病的回归。
于2023年11月23日收到; 2024年3月7日接受;于2024年3月26日发表作者分支:1生物学与生物技术系,意大利帕维亚大学,意大利帕维亚大学; 2 MRC全球传染病分析中心,英国伦敦帝国学院; 3英国欣克斯顿的欧洲生物信息学研究所欧洲分子生物学实验室; 4 Microbiology和病毒学单元,Fondazione Irccs Policlinico San Matteo,意大利帕维亚; 5英国巴斯大学生命科学系米尔纳进化中心; 6 Fondazione Irccs Policlinico San Matteo,意大利帕维亚。*信函:John A. Lees,Jlees@ebi。Ac。UKUK关键字:AMR;抗生素抗性;细菌基因组学; gwas;肺炎;机器学习;麦克风缩写:AMR,抗菌耐药性; BACC,平衡精度; CI,一致性指数; CPFX,环丙沙星; ES,效果大小; fn,假否定; Gen,庆大霉素; GTR,一般时间可逆; GWAS,基因组广泛的关联研究; LD,连锁不平衡; MAF,次要等位基因频率; MEM,MeropeNem; MIC,最小抑制浓度; SNP,单核苷酸多态性; TP,真正的积极; TZP,哌拉西林/tazobactam; WGS,整个基因组测序。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用二十四个支持数据和一个补充表。001222©2024作者
a 南非医学研究委员会疫苗和传染病分析研究组,约翰内斯堡威特沃特斯兰德大学,南非 b 全球卫生部,比尔和梅琳达·盖茨基金会,美国华盛顿州西雅图 c KEMRI/威康信托研究计划,肯尼亚基利菲 d 英国牛津大学热带医学与全球卫生中心 e 英国伦敦大学圣乔治新生儿和儿科感染中心 f 瑞士巴塞尔巴塞尔大学儿童医院儿科研究中心 (PRC) g 阿姆斯特丹 UMC,阿姆斯特丹大学,神经病学系,阿姆斯特丹神经科学系,Meibergdreef,阿姆斯特丹,荷兰 h 阿姆斯特丹 UMC,阿姆斯特丹大学,儿科系,阿姆斯特丹神经科学系,Meibergdreef,阿姆斯特丹,荷兰 i 克罗伊登大学医院,英国伦敦 j 波士顿大学 CARB-X,美国马萨诸塞州波士顿 02215 k 马里兰大学医学院疫苗开发和全球卫生中心,美国马里兰州巴尔的摩 l 英国伦敦卫生与热带医学院传染病和热带病学院感染生物学系,伦敦 WC1E 7HT m 澳大利亚莫纳什大学中央临床学院传染病系,墨尔本,维多利亚 3004 n 马拉维-利物浦惠康计划儿科和儿童健康研究组,马拉维布兰太尔 o 英国伦敦卫生与热带医学院流行病学和人口健康学院传染病流行病学系,伦敦 WC1E 7HT p 乌干达坎帕拉马凯雷雷大学-约翰霍普金斯大学研究合作组织 q 美国俄亥俄州辛辛那提辛辛那提儿童医院医学中心和辛辛那提大学儿科传染病分部 r 印度韦洛尔基督教医学院临床微生物学系 s 同一个健康信托班加罗尔;普林斯顿大学,美国新泽西州普林斯顿 t 英国卫生安全局,英国波顿唐 u 世界卫生组织,瑞士日内瓦 v 意大利葛兰素史克全球健康疫苗研究所 w 乌干达坎帕拉上穆拉戈山路马凯雷雷大学健康科学学院医学院妇产科系 x 英国伦敦卫生与热带医学院卫生服务研究与政策系 y 瑞士日内瓦全球抗生素研究与发展伙伴关系 (GARDP) z 英国伦敦帝国理工学院医疗保健 NHS 信托基金儿科系 aa 英国卫生安全局病原体基因组学计划 ab 美国密苏里州圣路易斯华盛顿大学医学院儿科系和分子微生物学系 ac 加拿大不列颠哥伦比亚省温哥华儿童医院研究所疫苗评估中心 ad 加拿大不列颠哥伦比亚大学儿科系免疫接种,疫苗和生物制品,世界卫生组织,瑞士日内瓦
摘要:新兴的威胁生命的多种耐药性(MDR)物种,例如Haemulonii物种复合物,Clavispora Lusitaniae(Sin。C。lusitaniae)和其他念珠菌在不久的将来被认为是人类健康风险的增加。(1)背景:许多研究强调,耐药性的增加可能与念珠菌中的几种毒力因素有关,并且其知识对于制定新的抗真菌策略也至关重要。(2)方法:在G. mellonella幼虫上的疏水性,粘附,生物膜形成,脂肪酶活性,对渗透压的耐药性和毒力为“体内”。(3)结果:观察到种内和间隙的变异性。C. haemulonii表现出较高的疏水性和粘附并形成生物膜的能力。C。lusitaniae疏水较少,是生物膜形成 - 应变依赖性的,并且没有显示脂肪酶活性。幼虫的死亡率明显高于感染Haemulonii和C. lusitaniae的死亡率。(4)结论:在这些非野生型念珠菌和克拉维斯普拉斯分离株中观察到的与其疏水能力相关的生物膜,适应压力并在体内模型中感染的能力,显示出其明显的毒力特征。由于定义毒力的因素与这些真菌对可用于临床使用的少数抗真菌性的抗性的发展有关,因此必须考虑这些细胞的生理学差异以开发新的抗真菌疗法。
德克萨斯州健康与安全法规(HSC),第94A.001节要求州卫生服务部(DSHS)制定一项国家计划,以预防和治疗由肺炎链球菌引起的疾病,包括对受肺炎链球菌的不成比例影响的人群群体的策略。这些群体包括65岁或以上的成年人,两岁以下的儿童,吸烟,患有哮喘的人和免疫功能低下的人。根据本节,DSHS至少每五年至少每五年审查并修改肺炎链球菌(州计划)的州计划。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年12月12日。 https://doi.org/10.1101/2023.12.12.12.571344 doi:Biorxiv Preprint
抽象肺炎链球菌(肺炎球菌)是一种人类病原体,负责肺炎,败血症和脑膜炎等多种疾病。胶囊是主要的肺炎球菌毒力因子,由盖帽小多糖(CPS)基因座编码,这是一种重组热点,已导致迄今为止确定的100多种不同的帽多糖类型(血清型)。最近,提出了33倍(也称为10倍)作为推定的新型血清型,但胶囊结构尚未阐明。在这里,我们提供了33倍的深入研究,证明它是一种新的肺炎球菌血清型。在这项研究中,我们在2015年至2022年期间收集了来自健康儿童和肺炎患者(成人和儿童)的12,850名鼻咽拭子(成人和儿童)。我们确定了20个肺炎球菌33x分离株。使用整个基因组测序,我们发现33x CPS基因座是来自肺炎球菌血清群35、10和33的基因的嵌合体以及其他链球菌。通过Quellung反应对33倍肺球运动的血清分型揭示了独特的血清学特征,键入为10b和33b。竞争ELISAS证实,针对33倍的小鼠产生的抗体受到33倍肺炎球菌的抑制,而不是10b或33b。Lastly, the elucidation of the 33X capsule structure revealed that the polysaccharide is distinct from other serotypes, consisting of an O-acetylated hexasaccharide repeat unit of → 5)-β-Gal f -(1 → 3)- β-Glc p -(1 → 5)-β-Gal f 2Ac-(1 → 3)-β-Gal p NAc-(1 → 3)-α-gal p-(1→4)-rib-ol-(5→P→。因此,33倍符合必要的遗传,血清学和生化标准,该标准被指定为一种新的血清型,我们将其命名为33G。
肉类产品是人类饮食的重要组成部分,是营养的良好来源。食源性微生物是由于食用食物,尤其是动物起源产物而导致人类疾病的主要病原体。本研究的目的是验证胸腺氏胸腺精油对肺炎克雷伯氏菌的菌株的抗菌活性,铜绿假单胞菌和肉毒葡萄球菌与肉类产品分离出来的抗菌活性。为此,在微稀释板中进行了最小抑制浓度(MIC)和最小杀菌浓度(MBC)的分析。还使用磁盘扩散研究了产品与抗菌剂的关联。和抗粘附活性,在蔗糖存在下在玻璃管中确定。百里香油对K的抑制作用很强。肺炎,p。铜绿和s。saprophyticus,MIC值范围为64至512μg/ml,大多数菌株的杀菌作用范围为256至1,024μg/ml。t。寻常油与抗菌剂相关的相互作用各异,与协同(41.67%),冷漠(50%)和拮抗作用(8.33%)效应相关。关于抗粘附活性,测试产物可有效抑制所有正在研究的细菌菌株的依从性。因此,百里香油作为针对k的抗菌和抗依从剂的表现。肺炎,p。铜绿和s。saprophyticus是一种天然产品,可以代表对抗食源性疾病的有趣替代品。
Chang 等,2012;Fazili 等,2016;Rossi 等,2018)。研究表明,赋予 hvKp 高毒力表型的最典型的毒力因子由位于毒力质粒上的基因编码,其中包括 iuc/iro(铁载体 aerobactin/salmochelin 的生物合成基因)、rmpA/rmpA2(增加荚膜产量的调节剂)和 peg-344(功能未知的代谢转运蛋白)(Russo and Marr,2019)。因此,大型毒力质粒上毒力基因的丢失将显著降低 hvKp 的毒力。尽管对hvKp毒力机制的研究已经取得了很大进展,但仍有许多问题尚未揭示:例如,毒力基因之间如何相互作用,它们如何调控hvKp的高毒力表型,以及毒力因子如何与宿主免疫系统相互作用。针对hvKp毒力质粒的有效基因编辑方法对于理解这些未知机制至关重要。目前,对hvKp毒力质粒进行基因敲除的报道很少,主要依赖于随机转座子插入和自杀质粒介导的同源重组(Cheng等,2010;