抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
为培育科技人才及鼓励他们从事创新及科研事业,创新科技署(「创新科技署」)于 2020 年 7 月 1 日将研究员计划及博士后专才库合并为研究人才库,以资助合资格机构╱公司聘用研究人才从事研发工作。2. 研究人才库为进行获创新及科技基金 1 资助的研发项目的机构╱公司(「RTH-ITF」)、香港科技园公司(「科技园公司」)及香港数码港管理有限公司(「数码港」)的培育公司和创新及科技租户(「RTH-SPC」)、在香港进行研发活动的科技公司(「RTH-TC」),以及获新工业化加速计划资助的公司(「RTH-NIAS」),提供资助,以聘用研究人才从事研发工作。在香港进行研发活动的科技公司,若同时是香港科技园公司及数码港的培育公司及创科租户,则应根据“RTH-SPC”提出申请。 3. 本指南载列适用于香港科技园公司及数码港的培育公司及创科租户的“RTH-SPC”详情。有关“RTH-ITF”、“RTH-TC”及“RTH-NIAS”的详情,请参阅其各自的指南。 I. 资格 申请公司 4. 申请时为香港科技园公司及数码港的培育公司及创科租户2,可申请资助,以聘用研究人才协助研发活动 1 获创新及科技支持计划资助的研发项目包括获创新及科技支持计划资助的项目
国家咨询委员会M.Ravichandran博士,新德里Moes秘书Parvinder Maini博士,PSA,政府秘书。M.Mohapatra博士,DGM,IMD,新德里,新德里S.K. Chowdari博士,DDG(NRM),ICAR,ICAR,新德里Shailash Nayak博士Y.Srinivasa Rao,DG,NS&M,NSTL,Drdo G.V.M.博士Gupta,科学家G兼CMLRE,MOES,新德里,新德里R.Krishnan博士,IITM主任,浦那教授S.K.Singh教授,CSIR,NIO,NIO,NIO,GOA V.S. PRASAD博士,NCMRW博士,NCMRWF,NCMRWF,NEW DELHI T.Srinivasa Kumar Dr. thlabada vij vij vij vij vij vij vij vij vij vij vij。美国NOAA的科学家Surry博士M.V.Ramanana Murthy,NCCR董事,钦奈G.A. Ramadass博士,Niot,Niot,Chennai董事Nilesh M.Desai博士,SAC,SAC,SAC,AHMEDABAD,AHMEDABAD A.K. PTRARA博士NRSC,海得拉巴(Hyderabad
国家咨询委员会M.Ravichandran博士,新德里Moes秘书Parvinder Maini博士,PSA,政府秘书。M.Mohapatra博士,DGM,IMD,新德里,新德里S.K. Chowdari博士,DDG(NRM),ICAR,ICAR,新德里Shailash Nayak博士Y.Srinivasa Rao,DG,NS&M,NSTL,Drdo G.V.M.博士Gupta,科学家G兼CMLRE,MOES,新德里,新德里R.Krishnan博士,IITM主任,浦那教授S.K.Singh教授,CSIR,NIO,NIO,NIO,GOA V.S. PRASAD博士,NCMRW博士,NCMRWF,NCMRWF,NEW DELHI T.Srinivasa Kumar Dr. thlabada vij vij vij vij vij vij vij vij vij vij vij。美国NOAA的科学家Surry博士M.V.Ramanana Murthy,NCCR董事,钦奈G.A. Ramadass博士,Niot,Niot,Chennai董事Nilesh M.Desai博士,SAC,SAC,SAC,AHMEDABAD,AHMEDABAD A.K. PTRARA博士NRSC,海得拉巴(Hyderabad
引言葡萄球菌是在环境中抵抗最大的非孢子细菌。在干燥的临床样品中可能存活数月,具有相对耐热性,可以耐受盐浓度升高。然而,尽管存在抗菌素,改善了卫生条件和医院感染控制措施,但这种微生物仍然是人类最重要的病原体之一。健康的个体通过金黄色葡萄球菌从母乳喂养中间歇性地殖民,并且可以在鼻咽中容纳微生物,偶尔在皮肤上,而在阴道中很少。在这些部位,金黄色葡萄球菌可能通过直接接触或气溶胶污染患者的皮肤和粘膜,无生命的物体或其他患者,从而导致致命的感染因毒力或对当前使用的抗菌药物的抗性而导致致命感染。葡萄球菌葡萄球菌引起的感染病例部分抗性抗生素,例如万古霉素,而阴性葡萄球菌凝结酶的报道必须发展出抗性。因此,需要快速有效地识别这些微生物出现的所有情况。链球菌是抗抗生素时代医院感染的最大原因,导致感染和产后妇女死亡。肠球菌的重要性越来越重要,因为由于传统上用于治疗这些感染的抗生素几乎完全抵抗力,引起了医院感染。尽管目前不是医院感染的重要原因,但是即使在免疫能力的患者中,它们也会引起非常严重且经常致命的疾病,并且该药物的快速诊断很重要。最常见的肠球菌是:粪肠球菌(占病例的90%)和肠球菌粪便,患者的殖民能力较大,医院使用的污染表面或设备。它们对称为糖肽的抗生素具有敏感性或可变性,例如万古霉素和二甲苯蛋白酶。目前有天然可抗性的共生菌株可以从住院的患者中隔离,但尚无法引起暴发,但应正确识别。初步鉴定链球菌和葡萄球菌的鉴定基于液体培养基中存在的形态。由于链球菌是通常的长链,葡萄球菌以椰子的形式证明了葡萄卷曲或分组。识别推定始于对RAM血板上的主要接种,该接种应在5%CO²中孵育(蜡烛方法或煤炭2)。葡萄球菌菌落通常更大,凸面,着色范围从白色到黄色,并且可能有溶血。应注意的是,金黄色葡萄球菌中淡黄色的发育仅在室温下长时间孵育(72 h)后才发生。链球菌菌落倾向于较小(untiforms),并且总溶血卤素(β和α溶血)。p riva da c atalase带有细菌环或牙签将可疑菌落的中心收集,并摩擦到玻璃刀片中。将3%过氧化氢下降到此涂片上,并观察到气泡的形成。对于家族微核心素(葡萄球菌),证明通常为正,而对于链球菌家族(链球菌)为阴性。
1,2印度尼西亚尼亚斯大学电子邮件:yuwanmarthynziliwu@gmail.com *摘要,有机物降解的过程是生态系统周期的组成部分,该过程通过微生物的活性将复杂的有机化合物转换为更简单的形式。微生物,例如细菌,真菌和放线菌,在有机物的分解中起着重要作用,无论是家庭废物,农作物残留物还是有机工业废物。此过程涉及各种生化机制,例如水解,发酵和氧化,这些机制是由微生物产生的外细胞酶触发的。环境因素(例如pH,温度,湿度和氧含量)会影响微生物降解的效率。几种微生物,尤其是那些具有分解木质素,纤维素和半纤维素的能力的微生物,已广泛应用于有机废物管理技术,例如堆肥,生物修复和生产。对微生物在有机物降解中的作用的研究不仅对了解生态系统动态,而且还具有支持管理更环保和可持续性的有机废物的潜力。本摘要对影响有机物降解的作用,机制和因素及其在环境技术中的应用进行了回顾。关键字:微生物,有机物降解,细菌,真菌,环境因素,堆肥,生物修复。Faktor Lingkungan,Seperti PH,Suhu,Kelembaban,Dan Kandungan Oksigen,Mempengengaruhi Efisiensi Degradasi Oleh Mikroymanisme。摘要,有机物降解的过程是生态系统周期不可或缺的一部分,它通过微生物的活性将复杂的有机化合物转化为更简单的形式。微生物(例如细菌,真菌和放线菌)在有机物的分解中起着重要作用,包括家庭废物,植物残留物和有机行业废物。此过程涉及各种生化机制,例如水解,发酵和氧化,这是由微生物产生的外细胞酶触发的。一些微生物,尤其是那些具有分解木质素,纤维素和半纤维素的能力的微生物,已广泛应用于有机废物管理技术,例如堆肥,生物修复和沼气生产。对微生物在有机物降解中的作用的研究不仅对于了解生态系统的动态不仅重要,而且还具有支持努力来管理更环保和可持续的有机废物的努力。此摘要提供了影响微生物降解的作用,机制和因素,以及它们在环境技术中的应用。关键词:微生物,有机物的降解,细菌,真菌,环境因素,堆肥,生物修复。
真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
Gateway克隆技术基于保守和定向的重组系统,该系统允许在不同的克隆向量之间传递DNA片段,从而保持阅读网格,而无需核苷酸或损失。使用这种技术,不再需要使用限制性核酸内切酶(消除使用限制酶固有的任何限制)和DNA连接酶[1]。与传统的克隆方法相比,这项技术更快,更高效且便宜。此技术使您可以获得极高的克隆效率(大于90%)[2]。该技术是蛋白质合成和功能分析的极好克隆方法[3]。通过两种反应,BP和LR反应,使用了Gateway克隆机制(在ATTP和ATTB,ATTL和ATTR之间)利用gateway的克隆机制。为了发生BP反应,我们首先在包括ATTB序列的引物对[1.3](供体载体包括ATTP位置[1])的帮助下放大了感兴趣的基因。包括ATTB位置的PCR产品与包括ATTP位置的供体矢量相结合,从而形成了输入克隆[1]。ATTB和ATTP位置之间的这种整合反应在于该反应的起源,这引起了含有attl两侧的感兴趣基因的入口克隆(由ATTB和ATTP的重组组成)[1]。LR反应是进入克隆ATTL位置与目标向量的ATTT位置之间的重组反应,导致表达克隆[3]。从BP反应获得的输入克隆包括ATTL位置,目标向量构建以包括ATTR [1]位置。LR反应旨在将感兴趣的基因转移到目标载体,因此输入克隆与适当的目标矢量和LR克隆酶混合。这些地方之间的重组产生了两个分子[2],其中一个包含感兴趣的DNA段,另一个分子是一个副产品,其中包含CCDB基因,该基因与大肠杆菌DNA干扰了它的生长,以阻止其生长[3]。 CCDB。该基因对该技术非常重要,因为它可以防止大肠杆菌生长,从而允许进行负面选择。也就是说,在这两种反应中重组后,我们将拥有一种产品(将具有CCDB基因所在的感兴趣的基因)和副产品(将具有感兴趣基因所在的CCDB基因),因此,当选择的菌落将在其中包含一个具有利益的载体的菌落时,可以更轻松地(将其更容易)(可以选择一个是表达和表达的基因)使网关克隆技术成为高性能克隆技术的因素)。要获得包含CCDB基因的载体和传播向量,我们必须求助于e.coli db3.1 striber,该基因在Girase DNA中具有突变(gyra462),使其对该基因的致命作用具有抗性[3]。将感兴趣的基因或DNA片段克隆在输入克隆中后,我们可以将其转移到各种目的地向量,从表达蛋白到大肠杆菌细胞,酵母,昆虫,哺乳动物之间[4]。该方法的一些主要应用是这样的事实,即它允许输入向量向他人的亚克隆,基于攻城特异性重组,允许每个亚键反应以维持适当的阅读网格,速度和易于次数。