首席执行官马克·塞尔比表示:“今天的公告确保了 32,000 英亩地表权的使用权,这是公司完成许可并朝着 2025 年克劳福德建设决策迈出的又一个关键步骤。作为地表权协议的一部分,公司将把金斯米尔镇和马比镇的 47,750 英亩采矿权(这些地方没有已知的勘探目标)转让给地表权持有人。此次转让旨在为大片土地创造未来的确定性,促进可持续林业和野生动物栖息地保护的有效发展。我们为在释放克劳福德项目和蒂明斯镍业区的潜力方面取得的进展感到自豪,建设一个有利于环境并支持子孙后代的未来。”
“这项研究通过改善水电解在推进绿色能源解决方案方面起着至关重要的作用,这是一种从风能和太阳能等可再生能源产生绿色氢的关键技术,” Tooku University高级大学高级材料研究所(WPI-AIMR)的副教授Hao Li说。
摘要。镍氧化物(NIO)是一种半导体材料,具有独特的电子结构。由于其独特的电子特性,NIO是光电子,照片催化和诸如太阳能电池等能量设备的各种应用的有趣候选人。在当前的工作中,已经进行了量身定制Nio乐队的差距。一种简单的共沉淀方法,然后使用热处理来合成材料。在热处理之前,对合成材料的X射线衍射研究显示出存在氢氧化镍[Ni(OH)2]。在1000 O C下钙化一小时,揭示了单相NIO。热处理后,发现发现粒径增加了。使用UV-VIS光谱法记录了[Ni(OH)2]和NIO的吸收光谱。分别观察到Ni(OH)2和NIO的TAUC图A的带隙为4.2 eV和1.8 eV。观察到,注意到NIO的带隙显着减少。通过使用FESEM进行表面形态学研究,这表明板材像[ni(oh)2]的结构一样转变为钙化时多面形的Nio。通过能量分散光谱分析证实了镍和氧的存在。
镍铁氧体/(n,s)氧化石墨烯(NF/(n,s)GO)通过使用Ni 2+和Fe 3+混合物(n,s)GO养老金中的Ni 2+和Fe 3+混合物合成。该材料用作水生B(Rhb)降解作为水生环境中的染料模型的光催化剂。发现Nife 2 O 4纳米颗粒的粒径为11.5 nm,高度分散在(N,S)GO矩阵上,该矩阵是由石墨和硫库制备的。可见光诱导的RHB在NF/(N,S)GO上的光降解已被研究,其中Nf/(n,s)GO与镍铁氧体和(N,S)GO相比,NF/(N,S)对RHB具有高光降解活性。此外,在RHB光降解的三个周期之后,该催化剂没有显示出明显的活性损失(与新鲜催化剂相比,降解效率下降约为15%),证实了其稳定性。化学氧的需求(COD)测量表明,在光降低240分钟后,COD从初始时间的49.4 mg.l -1逐渐减少到4.8 mg.l -1,表明降解过程的矿化程度很高。此外,动力学和自由基的清道夫研究表明,超氧化离子(·O 2 - ),羟基离子(·OH)是主要的光氧化剂,其次是孔(H +)和电子(E-)。还解决了RHB对NF/(N,S)GO的降解机制。这项研究通过利用可见光来源为水溶液中的有机污染物提供了一种可能的治疗方法。
以阳离子 Co 和 Ni 部分占据的形式生长了经验式 K+2Ni2+xCo2+ð1xÞðSO4Þ2,6H2O 的样品。通过慢速蒸发生长法获得了光学质量良好的混合晶体。在分解过程中,这些晶体的质量损失约为 24%,相当于水分子形成 Ni 和 Co 的八面体配位离子。测量了生长晶体的光学特性,其中透射率在 190 至 390 nm 的波长范围内达到 80% 以上。通过拉曼光谱,识别了 SO24、H2O 和八面体 Ni(H2O)6 和 Co(H2O)6 的振动模式。© 2017 作者。出版服务由 Elsevier BV 代表河内越南国立大学提供。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
社会面临着巨大的挑战,以维持和改善世界上每个人的生活,涉及健康,环境,能源,食物,水,最后但并非最不重要的是和平。尽管许多方面在实现这些目标方面发挥了作用,但资源的可用性及其可持续用途仍处于保证社会福祉的最前沿。化学将是提供解决方案的主要力量,现在,如果没有化学在合成和催化中所做的贡献,世界就无法维持世界。尽管化学的进步取得了巨大进步,但随着世界不断增长的人口和减少的化石原料,仍需要开发新的合成方法和技术,以实现可再生资源作为化学生产基础的转型。催化在驱动化学过程中起着重要作用。然而,催化剂通常是基于通常比黄金稀少的贵金属,这使得它们被土壤丰富的金属替代,这是对未来的巨大需求。结合了光催化和流动化学等新兴技术,可再生原料用3D的金属催化剂的催化转化是最大的挑战之一,但也是几代人将获得可持续未来的最大希望之一。本课程将在可再生资源转换的背景下概述当前的合成和催化状态,重点是用3D-Metal的催化剂,例如Iron,Iron,cobalt,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickelt,catalys,Palladium,Rhodium或Ruthenium等珍贵金属催化剂。
摘要 高 Jc 镍基高温合金在航空航天、海洋、核能和化学工业中得到广泛应用,这些工业领域需要具有出色的抗腐蚀和抗氧化性能、优异的机械性能和出色的高温性能。然而,由于这些合金的化学性质复杂,基于选择性激光熔化 (SLM) 的高 Jc 镍基高温合金的增材制造 (AM) 面临重大挑战。这些材料具有多种合金元素和较高的铝+钛含量,当通过 SLM 固结时会形成各种二次相,严重影响可加工性,导致裂纹的形成。本综述的目的是总结迄今为止在高 Jc 镍基高温合金 SLM 方面取得的进展,特别强调阐明该合金系统中加工、微观结构和性能之间的关系。关键词:高 Jc 镍基高温合金、增材制造、选择性激光熔化 (SLM)、加工、微观结构、力学性能
关于Panasonic Energy Panasonic Energy Co.,Ltd。,成立于2022年4月作为Panasonic Group转换为运营公司系统的一部分,在全球范围内提供基于创新的电池技术的产品和解决方案。通过其汽车锂离子电池,储物电池系统和干电池,该公司将安全,可靠和便捷的功率带给各种业务领域,从机动性和社交基础设施到医疗和消费产品。Panasonic Energy致力于为实现幸福和环境可持续性的社会做出贡献,并通过其业务活动,该公司旨在解决社会问题,同时又引起环境计划。有关更多详细信息,请访问https://www.panasonic.com/global/energy/。
每种电池技术都具有内在的优势和缺点:例如镍 - 金属氢化物电池提供相对较高的特定能量和功率以及安全性,使它们成为混合动力汽车的首选功能,而水性有机流动电池(AORFB)则具有可持续性和简单的活性材料的简单更换,以及独立的能源和电源,使其对固定的能量存储非常有吸引力。[1]在本演讲中,一种新的电池技术通过使用氧化还原介导的反应融合了上述电池技术,从本质上描述了每种独立技术的主要特征;例如实心材料的高能量密度,易于可回收性和能量和功率的独立可伸缩性(图1A)。[2]为此,Ni(OH)2和MHS限制在AORFB的正和负储层中,该储层采用了苯烷钾的碱性溶液,并混合了2,6-二羟基羟基酮酮和7,8-二羟基苯二醇和7,8-二羟基苯二醇和阳离子的混合物。基于储层的能力达到128 WHL -1的能量密度,留出了足够的改进空间,直至378 WHL的理论极限 -
摘要:锂镍锰钴(LiNi x Co y Mn z ,NCM)复合材料在先进电子器件和材料/合金中的应用十分广泛,其杂质成分分析是评价其质量的重要领域。本文提出了采用电感耦合等离子体发射光谱法(ICP-OES)测定NCM复合材料中硫的方法。研究了Si、Fe、Mn、Mg、Ca、Ni、Cr及主基体共存杂质的影响。在优化的条件下,硫在0~10 mg/L(±0.9999)范围内呈现良好的线性关系,加标回收率为98.11~102.07%,RSD为3.69%,共存杂质含量低于5.0%对硫的测定无明显干扰。该方法可以作为NCM复合材料中痕量硫含量的可靠测定。
