红光显示为绿色 尽管 CIR 摄影可用于从任何有利位置拍摄物体,但本期论文将重点介绍其在航空影像中的应用。这种摄影技术在航空影像中的实用性基于以下科学原理:大多数物体的 NIR 反射率可忽略不计,但活跃生长的植物具有较高的 NIR 反射率(比植物对可见绿光的反射率高约 6 倍),而受压植物(无论是疾病还是干旱)的 NIR 反射率会降低。因此,活跃生长的植被在航空影像上以鲜红色突出显示,受压植被显示为深红色,而无植被区域则显示为取决于其材料成分的颜色。此外,不同植被类型(针叶树与阔叶树以及不同物种)之间存在细微的 NIR 反射率差异,这有助于植物识别。尽管 CIR 摄影最初是为二战期间的美国军方开发的,用于探测敌方伪装的坦克,但现在它已被政府机构(县、州和联邦)以及私营部门和学术界用于众多应用,例如:
红光显示为绿色 尽管 CIR 摄影可用于从任何有利位置拍摄物体,但本期论文将重点介绍其在航空影像中的应用。这种摄影技术在航空影像中的实用性基于以下科学原理:大多数物体的 NIR 反射率可忽略不计,但活跃生长的植物具有较高的 NIR 反射率(比植物对可见绿光的反射率高约 6 倍),而受压植物(无论是疾病还是干旱)的 NIR 反射率会降低。因此,活跃生长的植被在航空影像上以鲜红色突出显示,受压植被显示为深红色,而无植被区域则显示为取决于其材料成分的颜色。此外,不同植被类型(针叶树与阔叶树以及不同物种)之间存在细微的 NIR 反射率差异,这有助于植物识别。尽管 CIR 摄影最初是为二战期间的美国军方开发的,用于探测敌方伪装的坦克,但现在它已被政府机构(县、州和联邦)以及私营部门和学术界用于众多应用,例如:
我们在此报告中的近红外(NIR) - 发光蛋白质复合物与共轭聚合物。我们已经发现,NIR区域中的固态发光可以从由硼偶氮苯复合物组成的一系列共轭聚合物中获得。我们在本文中证明了蛋白质分子可以通过与含硼偶氮苯的共轭聚合物的吸附来修饰,仅通过在水缓冲液中混合并随后用过滤纯化,然后冷冻干燥。修饰的蛋白质复合物可以在缓冲液中表现出NIR发射和高色散性。特别是,与吲哚羟氨酸绿(ICG)相比,这是一种常规的衰老染料染料,聚合物修饰的蛋白质复合物显示出对光漂白的耐药性。最后,通过将脂肪酶用作支架,我们证实了在聚合物修饰后可以检测到酶促活性。关键字:共轭聚合物;近红外发光;唑苯;蛋白质复合物
本文介绍了使用近红外(NIR)激光源,直接检测电磁和被动红外成像系统的新技术。这些技术允许直接确定大气灭绝,并通过采用合适的反转算法,对某些重要的天然和人造大气成分的间接测量,包括二氧化碳(CO 2)。所提出的技术适用于使用飞机,卫星,无人驾驶汽车(UAV),降落伞/滑行车辆,Roving Surface车辆(RSV)或永久地面装置(PSI)执行的遥感任务。拟议的各种技术在不同情况下提供了相对优势。所有这些都是基于对已知几何和反射特性目标表面的激光能量/功率的测量,该测量是通过红外检测器和/或用于辐射的红外摄像头的测量值。实验结果相对于地面和飞行试验提供了用激光系统进行的飞行试验,该激光系统在近红外(NIR)= 1064 nm和= 1550 nm。这包括在各种大气条件下使用10 Hz和20 kHz PRF NIR激光系统执行的地面测试,以及在龙卷风飞机上安装的10 Hz机载NIR激光系统进行的飞行试验,飞到地面上的22,000英尺高度为22,000英尺。未来的活动计划验证为CO 2柱密度测量开发的大气检索算法,重点是机场和其他高空交通密度环境的飞机相关排放。
图1。拟合半导体聚合物(SPS)和DOX的NIR和pH双反应性纳米颗粒的制备,递送和细胞内药物释放的示意图。纳米颗粒是通过使用pH敏感的共聚物peg-pasp(dip- co -bza-co -dox)封装的胶束来制备胶束的。纳米颗粒被肿瘤细胞内部化,其中溶酶体DOX通过破坏氢氮键从纳米颗粒中释放出来。在NIR辐照后,SPS会产生高温以杀死肿瘤细胞。NIR诱导的高温还可以使DOX渗透在肿瘤组织中,以杀死来自光热疗法(PTT)的肿瘤细胞。因此,SPS和DOX的共递送表现出协同的抗肿瘤效应。PA和PT成像指示光声和光热成像。
100%完成 - 100%完成的认可财务关闭EPC -100%。分支太阳能项目。圣米格尔(San Miguel),Leyte VIII,2025年80.000卡迪兹市,内格罗斯2025维多利亚城市。 Ubay,Bohol,Bohol,17.5 NEGRO的Manapla 2026年12月2026年12月2026年12月2026年12月
摘要。背景:诸如阿尔茨海默氏病(AD)的PET和MRI AID临床评估之类的医学成像方法。便宜,技术要求较低,并且需要更广泛的可部署技术来扩大客观筛查以进行诊断,治疗和研究。我们先前在体外报道了脑组织近红外光谱(NIR),表明有可能满足这种需求的潜力。目标:通过匹配对照组的临床,临床,NIR Invivo CandistinguishAdpatients,临床,NIR Invivo CandistryishAdpatients,并显示了NIR作为临床筛查的潜力和监测治疗性有效性的潜力。方法:在体内获取NIR光谱。研究了三组:尸检确认AD,对照和轻度认知障碍(MCI)。使用强度归一化光谱的第一个衍生物的特征选择方法用于发现最能区分“ ad-alone”(即没有其他显着神经病理学)的光谱区域。然后将该方法应用于其他尸检确认的AD病例和临床诊断的MCI病例。结果:大约860和895 nm的两个区域将AD患者与对照组完全分开,并根据损伤程度区分MCI受试者。895 nm功能在将MCI受试者与对照组分开(权重:1.3)方面更为重要。 860 nm功能对于区分MCI和AD(重量比率:8.2)更为重要。结论:这些结果构成了近红外光谱可以检测和分类患病和正常人脑的概念的证明。需要进行临床试验来确定这两个特征是否可以跟踪疾病进展并监测潜在的治疗干预措施。
金泽大学自然科学与技术研究生院,日本金泽 920-1192 (tfuruyama@se.kanazawa-u.ac.jp) 酞菁 (Pcs) 和相关大环化合物 (azaporphyrinoids) 是现代材料化学中众所周知的人工染料。迄今为止,已提出了几种对其光学/电化学/芳香性质进行微调的策略。有机合成提供了各种各样的有机分子。Pcs 的多样性提供了新颖的功能,这是创新科学的源泉。我们小组专注于 Pcs 的化学合成,包括“生产新型 Pcs 的受控反应”和“使用 Pcs 的受控反应”。本讲座将讨论 Pc 化学中受控反应的最新成果。五价磷 (P(V)) 的高电负性和高价态有望改变 Pcs 的光谱性质。我们开辟了一种合成策略来制备 (aza) 卟啉 P(V) 复合物。这些配合物由于与外围取代基的结合而具有独特的物理性质 [1]。最近,Si(IV) Pcs 与其轴向配体之间的协同效应也被发现。吸收近红外 (NIR) 的亲水性 Si(IV) Pcs 在近红外光照射 (810 nm) 下表现出高效的光动力学活性 [2]。Pcs 的化学选择性合成是一个重要的课题,但尚未引起太多关注。我们提出了一种新颖的 Pb 介导合成方法,通过该方法合成了带有吸电子基团的 Pcs 材料。这些材料可产生高水平的单线态氧并表现出高光稳定性 [3–4]。在研究 Pc 衍生物的过程中,我们成功合成了一种新型球形金属配合物,它可以吸收近红外区域的光。各种 Pc 前体都用于合成对称和低对称性配合物。结论是,谱带位置和氧化还原电位可以独立调节 [5–6]。Pcs 的精细可调性使得开发一种利用远红光到近红外光的新转化方法成为可能。我们开发了几种用于有机分子转化的近红外催化剂。这些反应进一步表现出对蓝光到绿光吸收功能材料的化学选择性,即使在屏蔽条件下也具有高反应活性 [7–8]。总之,我们小组进行了广泛的基于 Pc 的研究,包括开发 Pcs 生产的合成方法及其受控反应。这些成就为近红外光的灵活应用创造了更多机会。
方法 我们分析了一组儿童是否按时接种了全套疫苗,是否有延迟接种、只接种了部分疫苗,以及他们是否拒绝接种疫苗或选择退出疫苗登记。(见下表。)我们的队列基于 2018 年人口普查,包括 2011 年至 2014 年期间在新西兰出生且有一个或多个孩子在国家免疫登记册 (NIR) 上的父母(280,000 名儿童)。此外,人口仅包括 NIR 上的儿童。