重症肌无力 (MG) 是一种由神经肌肉接头 (NMJ) 自身抗体引起的慢性致残性自身免疫性疾病,临床特征为眼肌、骨骼肌和延髓肌波动性虚弱和早期疲劳。尽管 MG 通常被认为是一种原型自身免疫性疾病,但它是一种复杂且异质性的疾病,表现出不同的临床表型,这可能是由于与不同的免疫反应性、症状分布、疾病严重程度、发病年龄、胸腺组织病理学和对治疗的反应相关的不同病理生理环境所致。目前基于国际共识指南的 MG 治疗可以有效控制症状,但大多数患者无法达到完全稳定的缓解,需要终生免疫抑制 (IS) 治疗。此外,其中一部分患者对传统 IS 治疗有抵抗力,这凸显了对更具体和量身定制的策略的需求。精准医疗是医学领域的一个新领域,有望大大提高多种疾病(包括自身免疫性疾病)的治疗成功率。在 MG 中,B 细胞活化、抗体再循环和补体系统对 NMJ 的损伤是关键机制,创新生物药物针对这些机制的靶向性已在临床试验中被证明是有效和安全的。从传统 IS 转向基于这些药物的新型精准医疗方法可以前瞻性地显著改善 MG 护理。在本综述中,我们概述了 MG 背后的关键免疫致病过程,并讨论了针对这些过程的新兴生物药物。我们还讨论了未来的研究方向,以满足根据遗传和分子生物标志物对患者进行内型分层的需求,以便在精准医疗工作流程中成功做出临床决策。
植物可能缺乏流动性,但对病原体和害虫构成的不断威胁并非毫无防御。模式识别受体(PRR),使植物能够有效识别入侵者。这些受体通过传感引起或损坏引起的细胞壁的碎片发挥作用。最近的研究强调了在发现寄生虫后,在国防机制协调中维持细胞壁完整性的重要性。病原体侵袭通常会触发细胞壁结构的改变,从而导致B-葡萄糖和寡乳糖苷剂等分子的释放。这些小分子然后被PRR识别,该分子刺激了涉及受体样激酶和钙依赖性信号传导的下游信号通路。在这里,我们对植物信号的最新见解在免疫中起着至关重要的作用:维持细胞壁完整性;受体样激酶之间复杂的相互作用;以及钙离子的参与。审查的目的是为读者提供对植物防御策略潜在机制的更深入的了解。
在协同进化的选择下进化的免疫系统是动物对病原体攻击的抗药性(1)。生物体的免疫力分为适应性免疫和先天免疫。自适应免疫力在脊椎动物(2)中独立演变,并且是唯一具有记忆力的人。然而,越来越多的研究表明,先天免疫可以增强对继发感染的免疫反应,这意味着先天免疫具有记忆力(3)。但是,与自适应免疫记忆不同,先天免疫的记忆涉及表观遗传修饰(4)。在脊椎动物中,还描述了自适应免疫记忆,先天免疫记忆或训练有素的免疫力(5,6)。在1986年(7)中首先描述了脊椎动物先天免疫在巨噬细胞中建立免疫记忆的能力,这似乎是由环境应力条件引起的(8-10),因此与T或B淋巴细胞触发的经典免疫学记忆不同(11,12)(图1)。许多关于疫苗和病原体的研究提供了先天免疫记忆的证据,例如在没有T/B淋巴细胞的SCID小鼠中,已经表明Bacille Calmette-
vermicompost是一种堆肥,是通过Vermicomposting过程产生的,它涉及使用earth将有机物分解为营养丰富的肥料。此过程是回收有机废物,减少垃圾填埋场中废物并为植物创造可持续的有机肥料来源的绝佳方法。Vermicomposting的关键好处之一是它具有有益的微生物富集土壤的能力。这些微生物在促进土壤健康和生育方面起着至关重要的作用,因为它们分解有机物并将其转化为植物可以使用的营养。通过将earth引入堆肥过程中,我们可以显着提高所得vermicompost中的微生物多样性和丰度。在ver骨上存在许多不同类型的微生物,包括细菌,真菌,原生动物和线虫。这些微生物在复杂的相互作用网络中共同起作用,以分解有机物并使植物可用。例如,细菌负责分解简单的糖和碳水化合物,而真菌分解了更复杂的有机化合物,例如木质素和纤维素。除了分解有机物外,Vermicompost中的微生物还有助于稳定土壤聚集体并改善土壤结构。这是因为它们分泌多种物质,包括多糖,蛋白质和酶,这些物质有助于将土壤颗粒结合在一起并产生稳定的土壤聚集体。反过来,这可以改善水渗透和保留率,减少侵蚀,并为植物生长创造更有利的环境。Vermicompost的另一个重要好处是它抑制植物疾病和害虫的能力。这是因为Vermicompost中的微生物群落包含许多对植物病原体和
蔗糖发酵是一个过程,涉及通过某些类型的微生物(例如酵母菌和细菌)将蔗糖转化为乙醇和二氧化碳的过程。此过程具有多种应用,从酒精饮料的生产到生物燃料和其他化学物质的工业生产。在本文中,我们将探讨蔗糖发酵背后的科学,包括所涉及的微生物,生化途径以及该过程的应用。蔗糖发酵通常由酵母和细菌等微生物进行。在蔗糖发酵中使用的最常见的酵母中是酿酒酵母和Zygosacchachomyces rouxii,而诸如Zymomonas mobilis和actobotobacter xylinum之类的细菌也能够执行此过程。酿酒酵母,也称为酿酒酵母,是一种单细胞的真菌,通常用于啤酒,葡萄酒和面包的生产中。它可以通过将蔗糖分解为葡萄糖和果糖来发酵,然后将其转化为乙醇和二氧化碳。在存在氧气的情况下,酿酒酵母也可以将乙醇转化为乙醛,该醛将进一步氧化为乙酸。Zygosaccharomyces rouxii是能够发酵的酵母。与酿酒酵母不同,它可以直接发酵蔗糖而不先将其分解成葡萄糖和果糖。Z. rouxii通常用于生产甜葡萄酒和强化葡萄酒,以及生产某些发酵食品(例如酱油和味oo)。它能够发酵Zymomonas mobilis是一种细菌,以其以非常高的速度发酵糖的能力而闻名。
草甘膦是全球最常用农药(除草剂)产品的活性物质:基于草甘膦的除草剂(GBHS)。它们被广泛用于杀死植物,从而在我们的生态系统,周围环境和身体中广泛存在。土壤在生物学上非常多样化和复杂的生态系统,提供了一系列基本功能,并直接与地下水,地表水和空气相互作用。毫无疑问,基于草甘膦的除草剂对农业生产有益,而不会对有益物种和土壤健康产生任何负面影响。这远非事实。除了杀死有益的植物并危害蜜蜂等重要的授粉媒介外,草甘膦还可以通过损害土壤微生物组和earth来严重破坏土壤健康。
多细胞生物生活在包含各种营养和各种微生物群落的环境中。一方面,生物体的免疫反应可以保护外源微生物的侵入。另一方面,生物体的合成代谢和分解代谢的动态协调是生长和繁殖的必要因素。由于产生免疫反应是一种能量密集型过程,因此免疫细胞的激活伴随着代谢转化,使ATP和新生物分子的快速产生。在昆虫中,免疫和代谢的协调是应对环境挑战并确保正常生长,发育和繁殖的基础。在通过致病性微生物激活昆虫免疫组织期间,不仅可以增强有机资源的利用,而且活化的免疫细胞也可以通过产生信号来篡夺非免疫组织的营养。同时,昆虫的体内也有共生细菌,这可以通过免疫 - 代谢调节影响昆虫的生理。本文从昆虫组织的角度(例如脂肪体,肠道和血细胞)回顾了昆虫免疫代谢调节的研究进度。在这里阐述了微生物(致病细菌/非病原细菌)和寄生虫对免疫代谢的影响,这为揭示昆虫和哺乳动物的免疫代谢机制提供了指导。这项工作还提供了见解,以利用免疫代谢来制定害虫控制策略。
非常关注植物提取物在牲畜和家禽生产中的应用,作为被禁止添加剂(例如抗生素)的替代品。植物提取物是从植物材料中提取的天然化合物或成分的混合物。由于存在众多具有药理特性的生物活性化合物,因此它们具有巨大的研究潜力。此外,由于它们的天然,可生物降解的性质以及减少对合成化学物质的依赖的能力,它们被认为是可持续和环保的选择。有关植物提取物在青贮饲料保存中施用的庞大科学研究已经报道了这种富集的植物的潜在抗真菌剂(Cock and van Vuuren,2015年),芦荟提取物具有广泛的微生物抑制活性,据报道它具有明显的抑制作用,并且对我的抑制作用具有明显的抑制作用,因此(命中率)(命中率)(命中率)(命中率)。 Al。,2013)。茶厂的有机简易提取物含有各种天然非离子表面活性剂,它们可以与某些抗菌剂合作以拮抗真菌(Hao等,2010)。一些研究报告说,ficus hirta vahl的乙醇提取物
通过康普茶微生物合成细菌纤维素在培养基上具有可变成分的养分成分Izabela betlej,Krzysztof J. Krajewski木材科学与木材保护系,木材技术学院,生命科学学院,科学科学摘要:细菌性纤维素纤维素合成,由knoboclocha micrororororgans of Nivients of Nivient of Nivient of Nivient of Nivient of Nivient of Animorororororerororerororerororormermismiss o an n a Indivients o and raimor of Animer of An I介绍。本文提出了评估各种蔗糖含量的影响的结果,以及康普茶微生物对合成效率和获得的细菌纤维素质量的生长培养基中各种氮化合物的存在。对获得的研究结果的分析表明,康普茶微生物合成纤维素合成的效率取决于生长培养基中可用的营养的数量和质量。关键词:细菌纤维素,康普茶,碳和氮源从化学的角度引入,细菌纤维素与植物纤维素相同,但是它具有比从植物组织中得出的纤维素更高的特征。首先,它的特征是高纯度,这是由于缺乏木质素和半纤维素,高结晶度,形成任何形状的易感性,高的吸湿性和非常高的机械强度以及高生物学兼容性[5,8,10]。这些功能保证了在各个行业使用细菌纤维素的绝佳机会。细菌纤维素已经成功地用于医学,作为敷料材料或外科植入物,作为生物传感器,以及食品,药房和造纸工业[7]。Fan等。Fan等。在造纸工业中,细菌纤维素主要用于漂白废纸,作为印刷缺陷的填充物[6]。在木工和包装行业中使用纤维素似乎也是潜在的。细菌纤维素是由细菌和酵母菌的大量微生物合成的。在纤维化微生物中,属于属的生物体:乙酰杆菌,动杆菌,achromobacter,achromobacter,agrobacterium,agrobacterium,psedomonas和sarcina [1]。这些微生物经常以企业化,生物膜的形式出现,通常被描述为“ Scoby”。尽管有许多独特的物理化学特征和非常有前途的应用观点,但在大规模上使用细菌纤维素会带来一些困难。这主要是由于生产成本仍然很高,生产率较低。高产量的合成产量不仅取决于培养方法,这与营养物质的可用性有关,还取决于微生物的动态相互作用。个体菌株的营养需求差异很大。Ramana和Singh [9]发现,乙型杆菌开发的最佳碳源,Nust4.1菌株,是葡萄糖,微生物和纤维素合成的生长进一步增加了,在存在硫酸钠的存在下,乙型甲基菌的生长,BRC菌株的生长,是乙醇,是乙醇的其他动态,是其他动态的。使用可变来源的碳和氮来对纤维素合成效率进行评估。[3]评估了底物上细菌纤维素的合成和质量,并增加了食品工业的废物。在这项工作中,尝试使用三种类型的培养基来评估通过包含的微生物菌株来评估细菌纤维素合成的效率,这些培养基的含量和氮源的可用性不同。
遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用
