草甘膦是全球最常用农药(除草剂)产品的活性物质:基于草甘膦的除草剂(GBHS)。它们被广泛用于杀死植物,从而在我们的生态系统,周围环境和身体中广泛存在。土壤在生物学上非常多样化和复杂的生态系统,提供了一系列基本功能,并直接与地下水,地表水和空气相互作用。毫无疑问,基于草甘膦的除草剂对农业生产有益,而不会对有益物种和土壤健康产生任何负面影响。这远非事实。除了杀死有益的植物并危害蜜蜂等重要的授粉媒介外,草甘膦还可以通过损害土壤微生物组和earth来严重破坏土壤健康。
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
乳腺癌 (BC) 是最常见的非皮肤癌,也是美国女性癌症死亡的第二大原因。乳腺癌的发生和发展可以通过遗传和表观遗传变化的积累来进行,这些变化使转化细胞能够逃脱正常的细胞周期检查点控制。与核苷酸突变不同,DNA 甲基化、组蛋白翻译后修饰 (PTM)、核小体重塑和非编码 RNA 等表观遗传变化通常是可逆的,因此可能对药物干预有反应。表观遗传失调是抗肿瘤免疫力受损、免疫监视逃避和免疫疗法耐药的关键机制。与黑色素瘤或肺癌等高度免疫原性的肿瘤类型相比,乳腺癌被视为免疫静止肿瘤,其肿瘤浸润淋巴细胞 (TIL) 数量相对较少、肿瘤突变负荷 (TMB) 较低,对免疫检查点抑制剂 (ICI) 的反应率适中。新兴证据表明,针对异常表观遗传修饰因子的药物可能通过几种相互关联的机制增强 BC 中的宿主抗肿瘤免疫力,例如增强肿瘤抗原呈递、激活细胞毒性 T 细胞、抑制免疫抑制细胞、增强对 ICI 的反应以及诱导免疫原性细胞死亡 (ICD)。这些发现为使用表观遗传药物与免疫疗法的组合方法作为改善 BC 患者预后的创新范例奠定了非常有希望的基础。在这篇综述中,我们总结了目前对表观遗传修饰因子如何发挥作用的理解
在原核生物和真核生物中,大多数已鉴定的离子泵 ATPase 属于以下三种结构类型之一。(i)F1Fo ATPase(F 型)存在于线粒体内膜(2)、叶绿体类囊体膜(3)和细菌细胞质膜(4)中。(ii)E1E2 ATPase(P 型)存在于真菌(5)、植物(6)和动物的细胞质膜中[包括 Na',K4-ATPase(7)和 H +,K + -ATPase(8)],以及肌细胞的肌浆网(Ca 2+-ATPase)(9)和细菌细胞质膜(K+-ATPase)(10,11)。 (iii) 已鉴定出第三类 ATPase(V 型),并从真菌和植物液泡(参考文献 12 及其中的参考文献)、包被囊泡(13、14)和嗜铬颗粒(15、16)的膜中部分纯化。正如 Mellman 等人(17)所建议的,我们使用术语“液泡 ATPase”来指代第三类 ATPase。F1Fo ATPase 通常使用 H+ 的电化学梯度(18)或偶尔使用 Na+ 梯度(19)来合成 ATP。这种类型的酶也表现出 ATPase 活性,在某些情况下仅在用蛋白酶活化后才表现出 ATPase 活性(20)。叠氮化物和 N,N'-二环己基碳二酰亚胺可抑制 F1Fo ATPase 的酶活性;寡霉素也可抑制线粒体 ATPase(21)。在 E1E2 ATPases 中,ATP 水解释放的能量与阳离子跨膜转运偶联。酶循环通过构象状态,包括形成磷酸化中间体。酶活性不受叠氮化物或寡霉素的影响,但被钒酸盐特异性抑制,在大多数情况下被 N-乙基马来酰亚胺和异硫氰酸荧光素抑制,而对于 Na4 ,K4-ATPase,则被乌巴因抑制 (5-11)。液泡 ATPases 似乎会水解 ATP,产生质子梯度,用于酸化细胞内区室 (12、17、22)。这组 ATP 酶因其抑制剂特异性而与其他两组 ATP 酶区分开来。液泡 ATPase 不受叠氮化物、寡霉素、钒酸盐或乌巴因的抑制。相反,
4。微生物的药用使用微生物用于生产抗生素和疫苗。抗生素:抗生素是由多种微生物产生的,即使在非常低的浓度下也抑制其他微生物的生长。真菌和细菌是产生多种抗生素的重要微生物。从细菌获得的抗生素:链霉素,金黄色肌霉素和氯霉素,四环素,红霉素。从真菌获得的抗生素:青霉素和灰欧。这些抗生素用于治愈人类,动物和动物中的各种疾病。1929年,亚历山大·弗莱明(Alexander Fleming)致力于一种引起疾病的细菌培养。突然,他在他的一个文化板上发现了一个小绿色的孢子。他观察到霉菌的存在阻止了细菌的生长。实际上,它也杀死了许多细菌。从中制备了模具青霉素。抗生素对感冒和流感无效,因为这些抗生素是由病毒引起的。使用抗生素时要采取的预防措施:1。应仅根据合格的医生的建议进行。2。患者必须按照医生的规定完成整个课程。3。不得服用多余的剂量。4。如果您在不需要或以错误的剂量时服用抗生素,则可能会在将来需要该药物时效果不佳。此外,不必要服用的抗生素可能会杀死体内的有益细菌。
乳腺癌仍然是全球女性癌症相关死亡的主要原因,凸显了对新治疗策略的需求。滋养层细胞表面抗原 2 (Trop-2) 是一种 I 型跨膜糖蛋白,在包括所有乳腺癌亚型在内的各种实体瘤中高度表达,已成为癌症治疗的一个有希望的靶点。本综述重点介绍用于治疗乳腺癌的 Trop-2 靶向抗体-药物偶联物 (ADC) 的最新进展。我们全面分析了 ADC 的结构和作用机制,以及 Trop-2 在乳腺癌进展和预后中的作用。几种 Trop-2 靶向 ADC,如 Sacituzumab Govitecan (SG) 和 Datopotamab Deruxtecan (Dato-DXd),在三阴性乳腺癌 (TNBC) 和激素受体阳性/HER2 阴性 (HR+/HER2-) 乳腺癌的临床试验中均表现出显着的抗肿瘤活性。我们系统地回顾了这些 ADC 正在进行的临床研究,重点介绍了它们的疗效和安全性。此外,我们还探索了将 Trop-2 靶向 ADC 与其他治疗方式(包括免疫疗法、靶向疗法和小分子抑制剂)相结合的潜力。值得注意的是,Trop-2 靶向 ADC 已显示出通过多种信号通路重新编程肿瘤微环境的前景,有可能增强抗肿瘤免疫力。本综述旨在为创新乳腺癌疗法的开发提供新的见解和研究方向,为改善乳腺癌患者的治疗结果和生活质量提供潜在的解决方案。
1个微生物学,生物有机和大分子化学单元,药学学院,Univerélibrede Bruxelles(ULB),BOULEVARD du TRIOMPHE,1050 BRUSSELS,BELGIUM 2 BRUSSELS,BELGIUM 2 APPLIED MATIFIER Science,The Enginemering Sciences,Uppsala oppsala oppsala oppsala opp.sala opp.sala opp.Box 534,75121 Uppsala,瑞典3 Laboratoire de ParasitologieMoléCulaire,教师埃克斯科学和CMMI,Univerélibrede Bruxelles(ULB),CP 300。Rue教授Jeener&Brachet,12,6041 Gosselies,比利时4 4号材料与聚合物创新与研究中心,Materia Nova Research Center&Mons University,Belgium 5 Mons,Belgium 5 Mons,MONS,MONS 5特斯拉,卡拉·杜萨纳(Cara Dusana)62-64,11158塞尔维亚7号贝尔格莱德7号口腔健康系,iuliu hatieganu医学与药房,维克多·巴布斯街(Victor Babes Street瑞士10中心Inter-Universitaire de Recherche et d'nierie nieriedesMatériaux,Cirimat,Toulouse INP,Toulouse INP,UniversitétoulouseUnivers 3 Paul Sabatier,CNRS,CNRS,CNRS,Universitédede de de de de de toulouse,4个全部Emile Monso,Bp444362,ceedex 4,31030 tour tour tour tour in tour in tour in tour in tour tour in tour in for化学,巴布斯 - 布莱伊大学 - 罗鲁班瑞班,范塔内尔街30,400294罗马尼亚克鲁伊·纳波卡 *通信:veronique.fontaine@ulb.be
微生物群落的特性从微生物之间的相互作用以及微生物及其环境之间的相互作用出现。在生物体的规模上,微生物相互作用是由细胞或细胞 - 资源相遇引发的多步骤过程。微生物相互作用的定量和合理设计需要量化相遇率。通常可以通过相遇内核来量化遇到的率 - 捕获相遇率对细胞表型的依赖性的数学公式,例如细胞大小,形状,密度或运动性以及环境条件,例如湍流强度或粘度。虽然已经研究了一个多世纪的遭遇内核,但通常在微生物种群的描述中没有足够的意见。此外,仅在少数典型的遭遇场景中才知道内核公式。然而,遇到内核可以通过阐明遭遇率如何取决于关键表型和环境变量来指导实验努力来控制微生物相互作用。遭遇内核还提供了在微生物种群生态模型中使用的参数的物理基础估计。我们通过审查传统和最近确定的内核来描述微生物相互作用的这种面向相互作用的观点,这些内核描述了微生物之间的相遇以及水生系统中的微生物和资源之间的相遇。
文章标题:综述:真菌细胞中的 CRISPR/Cas12 介导的基因组编辑:植物真菌病理学的进展、机制和未来方向 作者:Chiti Agarwal[1] 所属机构:华盛顿州立大学 [1] Orcid ids:0000-0003-4125-2880[1] 联系电子邮件:chiti.agarwal@gmail.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当的引用。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并已提交给 ScienceOpen Preprints 进行开放同行评审。 DOI:10.14293/PR2199.000129.v2 预印本首次在线发布时间:2023 年 6 月 8 日 关键词:CRISPR、CRISPR/Cas12、真菌病原体、植物病原体
非常关注植物提取物在牲畜和家禽生产中的应用,作为被禁止添加剂(例如抗生素)的替代品。植物提取物是从植物材料中提取的天然化合物或成分的混合物。由于存在众多具有药理特性的生物活性化合物,因此它们具有巨大的研究潜力。此外,由于它们的天然,可生物降解的性质以及减少对合成化学物质的依赖的能力,它们被认为是可持续和环保的选择。有关植物提取物在青贮饲料保存中施用的庞大科学研究已经报道了这种富集的植物的潜在抗真菌剂(Cock and van Vuuren,2015年),芦荟提取物具有广泛的微生物抑制活性,据报道它具有明显的抑制作用,并且对我的抑制作用具有明显的抑制作用,因此(命中率)(命中率)(命中率)(命中率)。 Al。,2013)。茶厂的有机简易提取物含有各种天然非离子表面活性剂,它们可以与某些抗菌剂合作以拮抗真菌(Hao等,2010)。一些研究报告说,ficus hirta vahl的乙醇提取物
